

AFRL-IF-RS-TR-2004-32
Final Technical Report
February 2004

MASA-CIRCA: MULTI-AGENT SELF-ADAPTIVE
CONTROL FOR MISSION-CRITICAL SYSTEMS

Honeywell Technology Center

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J124

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-32 has been reviewed and is approved for publication.

APPROVED: /s/
 DANIEL E. DASKIEWICH
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES A. COLLINS, Acting Chief
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2004

3. REPORT TYPE AND DATES COVERED
FINAL Jan 00 – Jul 03

4. TITLE AND SUBTITLE

MASA-CIRCA: MULTI-AGENT SELF-ADAPTIVE CONTROL FOR MISSION-
CRITICAL SYSTEMS

6. AUTHOR(S)
David J. Musliner, Robert P. Goldman, Michael J. Pelican
Kurt D. Drebsbach

5. FUNDING NUMBERS
C - F30602-00-C-0017
PE - 62301E
PR - J124
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Honeywell Technology Center
3660 Technology Drive
Minneapolis MN 55418

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-32

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Daniel E. Daskiewich/IFTB/(315) 330-7731 Daniel.Daskiewich@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The goal of this contract effort was to begin extending the Cooperative Intelligent Real-Time Control Architecture
(CIRCA) with abilities to automatically monitor its own performance and adapt in real-time, forming Multi-Agent Self
Adaptive (MASA) CIRCA. CIRCA is a coarse-grained architecture designed to control autonomous systems which
require both intelligent, deliberative planning activity and highly reliable, hard real-time reaction to safety threats. The
MASA-CIRCA project extended this architecture with the ability to reason accurately about its own real-time behavior,
and adapt that behavior in response to performance feedback. Major issues investigated during this project include
formally verifying real-time control plans, dynamically decomposing long-term plans into sub goals, and building real-
time control plans using probabilistic information to reason about most-likely states first. We provided digital video
demonstrations of these features, with MASA-CIRCA operating in a combat oriented multi-aircraft flight simulation
domain.

15. NUMBER OF PAGES14. SUBJECT TERMS
Software agents, real time planning, autonomous systems

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

68

Table of Contents

List of Figures ii

Preface iv

Abstract v

1. Introduction 1

2. Overview of CIRCA 3

3. Verifying State Space Plans 7

4. Incremental Verification 16

5. Partial Dynamic Abstraction and Heuristic Improvements 21

6. Probabilistic State Space Planner 23

7. Resource-Driven Subgoaling 27

8. Constrained Markov Decision Processes 28

9. Communication to Reduce Uncertainty 30

10.The Adaptive Mission Planner (AMP) 32

11.Deliberation Scheduling 34

12.Demonstration Environment 35

13.Demonstrations 39

14.Conclusions 56

References 57

i

List of Figures

1. The CIRCA architecture combines intelligent planning and adaptation with
real-time performance guarantees. 4

2. The simulated Puma robot arm domain. 4

3. Example transition descriptions given to CIRCA’s planner. 5

4. Sample output from the TAP compiler. 6

5. Summary of the CIRCA state space planning process. 7

6. A simple domain description for a UAV threatened by radar-guided missiles. 9

7. Simple UAV controller for evading radar-guided SAM threats. 10

8. The input model and clock zone analysis for the example UAV domain. . . . 14

9. The incremental CIRCA-Specific Verifier is faster than Kronos on all but two
domains. 20

10. Simplified Lisp code for the AMP outer loop, processing tasks and messages. 33

11. The demonstration simulation illustrates a MASA-CIRCA-controlled aircraft
responding to attacks with evasive maneuvers, flares, chaff, and counterattacks. 36

12. The AMP Information Display depicts AMP status. 37

13. The RTS Information Display shows what each RTS is doing at any time. . . 38

14. This mission overlay shows the expected path with known and unknown
threats and targets. 40

15. WING4 exploding. 41

16. After WING4 dies, the surviving CIRCA agents re-negotiate and generate new
plans to handle its responsibilities and ensure mission success. Moments later,
as the attack missile arcs in, the CIRCA team takes evasive maneuvers to avoid
a rising radar-guided missile. 42

17. Each phase of the mission involves different threats and goals. 43

18. Gantt chart of threat and goal coverage for Agent S throughout the mission,
along with graph of expected future utility corresponding to plan coverage.
Note that the agent does not have plans to destroy the targets during the
appropriate phases, and thus acquires few utils. 45

19. Each agent’s expected payoff over the course of the mission. 47

20. Gantt chart of threat and goal coverage for Agent U throughout the mission,
along with graph of expected future utility corresponding to plan coverage.
Note that the agent is not prepared to defeat radar-threat2 in the attack
phase, and it is destroyed. 48

21. Gantt chart of threat and goal coverage for AgentDU throughout the mission,
along with graph of expected future utility corresponding to plan coverage.
Note that the agent has plans to accomplish the destroy-target goals by
the time the respective phases occur. 50

ii

22. The threat/goal mission profile. The UAV encounters the low-probability
target and an unhandled threat in the Ingress phase, leading to two on-the-fly
replanning episodes. 52

iii

Preface

The work reported here was conducted by the Honeywell Technology Center, Minneapolis,
MN, during the period January 20, 2000 through July 31, 2003 under Air Force Research
Laboratory contract F30602-00-C-0017. Mr. Dan Daskiewich was the AFRL project officer
for the contract.

Any opinions, findings and conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of DARPA, the U.S.
Government, or the Air Force Research Laboratory.

This report is intended to provide an overview of the project research. This report makes
numerous references to more-detailed publications that have been generated during the
project. All of these publications are included on this publication disk, as well as on
WWW sites listed in the bibliographic information. If you choose to read the HTML
version of this report, it contains active hyperlinks that will lead directly from each citation
to the corresponding published paper.

iv

MASA-CIRCA: Multi-Agent Self-Adaptive Control

for Mission-Critical Systems

Abstract

This is the final report for the Defense Advanced Research Projects Agency (DARPA)

contract F30602-00-C-0017 entitled “MASA-CIRCA: Multi-Agent Self-Adaptive Control

for Mission-Critical Systems.” The goal of this contract effort was to begin extending the

Cooperative Intelligent Real-Time Control Architecture (CIRCA) with abilities to

automatically monitor its own performance and adapt in real-time, forming Multi-Agent

SA-CIRCA (MASA-CIRCA). CIRCA is a coarse-grain architecture designed to control

autonomous systems which require both intelligent, deliberative planning activity and

highly reliable, hard-real-time reactions to safety threats. CIRCA allows systems to provide

performance guarantees that ensure they will remain safe and accomplish mission-critical

goals while also intelligently pursuing long-term, non-critical goals. The MASA-CIRCA

project extended this architecture with the ability to reason accurately about its own

real-time behavior, and adapt that behavior in response to performance feedback. Major

issues investigated during this project include formally verifying real-time control plans,

dynamically decomposing long-term plans into subgoals, and building real-time control

plans using probabilistic information to reason about most-likely states first.

The primary technical products of this research project include two versions of CIRCA’s

controller-synthesis (or planning) algorithm. The first version, developed by Honeywell,

automatically generates reactive control plans and verifies their correctness using formal

model-checking methods. The second version, developed by the University of Michigan on

subcontract, does not use model checking to verify its plans, but incorporates a novel form

of probabilistic reasoning and a new multi-agent negotiation protocol to restrict its

planning effort to the most relevant future system states. Technical products also include a

completely new Adaptive Mission Planner that uses novel deliberation scheduling strategies

to manage the problem-solving performed by MASA-CIRCA, and uses Contract-Net style

negotiation to coordinate tasks between multiple MASA-CIRCA agents. We provide digital

video demonstrations of these features, with MASA-CIRCA operating in a combat-oriented

multi-aircraft flight simulation domain.

v

1. Introduction

This is the final report for the Defense Advanced Research Projects Agency (DARPA)

contract F30602-00-C-0017 entitled “MASA-CIRCA: Multi-Agent Self-Adaptive Control

for Mission-Critical Systems.” The goal of this contract effort was to extend the

Cooperative Intelligent Real-Time Control Architecture (CIRCA) with abilities to

automatically monitor its own performance and adapt in real-time, forming Multi-Agent

Self-Adaptive Cooperative Intelligent Real-Time Control Architecture (MASA-CIRCA).

CIRCA is a coarse-grain architecture designed to control autonomous systems which

require both intelligent, deliberative planning activity and highly reliable, hard-real-time

reactions to safety threats. CIRCA allows systems to provide performance guarantees that

ensure they will remain safe and accomplish mission-critical goals while also intelligently

pursuing long-term, non-critical goals. The MASA-CIRCA project took several steps

towards extending this architecture with the ability to reason accurately about its own

real-time behavior, adapt that behavior in response to performance feedback, and

communicate between agents to coordinate overall team activities.

Major issues investigated by Honeywell during this project include:

Plan Verification — MASA-CIRCA builds plans that can provide performance

guarantees of system safety; these guarantees are ensured using formal model checking

methods. Section 4 discusses our research into incrementally verifying these plans, a

patent-pending approach that provides significant performance improvements.

Deliberation Scheduling — For MASA-CIRCA deliberation scheduling is the task of

deciding what problems the Adaptive Mission Planner (AMP) and Controller

Synthesis Module (CSM) modules should be working on at any time. Most

importantly, time-consuming planning and scheduling processes must be managed to

ensure that the best possible control plans are built throughout the mission.

Section 11 describes our decision-theoretic approach in more detail.

Multi-agent Negotiation — Each MASA-CIRCA agent actively coordinates with other

MASA-CIRCA agents in a cooperative team. Section 10 describes this capability,

and Section 13.1 describes one demonstration of inter-agent negotiation.

Performance Monitoring — MASA-CIRCA monitors the execution of its plan to

ensure that progress is being made towards its goals, and that unexpected situations

(e.g., unexpected threats) are recognized. Section 13.4 details a demonstration of this

performance monitoring behavior and the subsequent adaptations (replanning) that

MASA-CIRCA performs automatically.

Section 13 describes the simulated Unmanned Aerial Vehicle (UAV) demonstrations we

developed to illustrate these behaviors of MASA-CIRCA in real-time, mission-critical

environments.

The University of Michigan team had, as its emphasis, issues of negotiation among

components within a CIRCA agent (specifically, negotiation between the AMP and the

1

CSM) and between CIRCA agents in order to approximately optimize resource scheduling
on the agents’ execution platforms. The assumption underlying this work was that the
demands placed on an execution platform might outstrip its available resources.
For example, an Unmanned Combat Air Vehicle (UCAV) might be incapable of monitoring for
all conceivable threats frequently enough to guarantee a desired level of safety. When this
occurs, negotiation is necessary. The CSM should request from the AMP a less demanding
control problem, providing to the AMP any guidelines it can about promising problem
relaxations. The AMP should use its higher-level perspective to revise and resubmit a new
controller synthesis problem to the CSM. Moreover, the AMP and CSM on one CIRCA platform
can potentially negotiate with their counterparts on another platform to similarly determine ways
of simplifying the controller synthesis problem. The efforts at the University of Michigan
developed algorithms and protocols for these purposes.
The results of this work can be summarized as follows:

Probabilistic State Space Planner — A version of the State Space Planner that is at the heart of
the Controller Synthesis Module has been extended to model time-dependent transition
probabilities. In the resulting Probabilistic State Space Planner (PSSP), we have developed
efficient techniques to use the probabilistic information to estimate probabilities of
reaching different states of the world. When too many real-time controller reactions need
to be scheduled, the state probabilities permit informed tradeoffs, where the least likely
reactions to be needed can be preferentially pruned until the remaining ones can be
scheduled. This leads to a synthesized controller that makes probabilistic safety
guarantees. The probability thresholds needed for scheduling, and hence the risk incurred,
can be reflected back to the AMP, which can use that information to revise the control
synthesis problem. In this way, the AMP and the PSSP negotiate to arrive at a synthesized
controller that is schedulable and meets mission needs. Section 6 describes this research in
more detail.

Resource-Driven Subgoaling — The State Space Planner has been augmented with algorithms
that inspect the resulting state reachability graph to identify ways of breaking the larger
graph down into more tractable subgraphs. If the larger graph requires more real-time
reactions than can be scheduled, breaking it into a sequence of phases, where the transition
from one phase to the next is under the CIRCA agent’s control, can permit the desired
level of safety guarantees. The new algorithms incrementally cluster states that must
belong in the same phase together, and identify action transitions that lead between phases.
These candidate phases are then passed back to the AMP, which can decide whether to
adopt the potential mission phasing, and if so can request smaller (phase) synthesis
controller problems to be solved in a negotiated manner. Section 7 describes this research
in more detail.

Constrained Markov Decision Processes — In recent work, the controller synthesis
problem has be formulated in terms of Constrained Markov Decision Problems
(CMDPs), where the constraints are on the resources available for executing policies.

2

A variety of different resource constraints have been studied. The most detailed
investigation has been into extending prior work on CMDPs to explicitly model the
probability of exceeding a resource constraint, and to generate control policies that are
probabilistically guaranteed not to exceed the resource constraint. Section 8 describes
this research in more detail.

Communication to Reduce Uncertainty — During controller synthesis, the greater the
number of transitions that could need preempting, the harder it is to schedule all of the
necessary reactions (Test-Action Pairs (TAPs)) frequently enough. In a setting
involving multiple CIRCA agents, one way of simplifying the controller synthesis
problem faced by each is through the exchange of information and the negotiation over
action choices made by each. Specifically, one CIRCA agent can inform another about
which reaction it will execute in a particular situation, meaning that the other agent need
not be prepared for the repercussions of every possible reaction that the other might
have taken. By selectively communicating about aspects of the controllers they have
each synthesized, they can help each other remove unnecessary portions of their
controllers, and therefore increase the effectiveness and safety assured by the controllers
ultimately generated. Section 9 describes this research in more detail.

2. Overview of CIRCA
1

CIRCA is designed to support both hard real-time response guarantees and unrestricted
Artificial Intelligence (AI) methods that can guide those real-time responses. Figure 1
illustrates the architecture, in which the AMP and CSM reason about high-level problems that
require their powerful but potentially unbounded planning methods, while a separate Real-
Time Subsystem (RTS) reactively executes the automatically-generated plans and enforces
guaranteed response times. The AMP and CSM modules cooperate to develop executable
reaction plans that will assure system safety and attempt to achieve system goals when
interpreted by the RTS.
CIRCA has been applied to real-time planning and control problems in several domains
including mobile robotics and simulated unmanned aircraft (UAVs). A UAV example will be
discussed in detail in Section 3. To introduce the key CIRCA concepts in this section, we draw
examples from the domain illustrated by Figure 2, in which CIRCA controls a simulated Puma
robot arm that must pack parts arriving on a conveyor belt into a nearby box. The parts can
have several shapes (e.g., square, rectangle, triangle), each of which requires a different
packing strategy. The control system may not initially know how to pack all of the possible
types of parts— it may have to perform some computation to derive an appropriate box-
packing strategy. The robot arm is also responsible for reacting to an emergency alert light. If
the light goes on, the system must push the button next to the light before a fixed deadline.

1This section and the next are drawn largely from prior material, including the prior SA-CIRCA project
final report.

3

Real
Time

Subsystem

Scheduler

State Space
Planner

Adaptive
Mission
Planner

Module
Synthesis
Controller

Feedback Data

Feedback Data

Subgoals,
Problem Configurations

Reactive Plans

The World

Figure 1. The CIRCA architecture combines intelligent planning and adaptation with
real-time performance guarantees.

Figure 2. The simulated Puma robot arm domain.

4

EVENT emergency-alert ;; Emergency light goes on

PRECONDS: ((emergency nil))

POSTCONDS: ((emergency T))

TEMPORAL emergency-failure ;; Fail if don’t attend to

PRECONDS: ((emergency T)) ;; light by deadline

POSTCONDS: ((failure T))

MIN-DELAY: 30 [seconds]

ACTION push-emergency-button

PRECONDS: ((part-in-gripper nil))

POSTCONDS: ((emergency nil) (robot-position over-button))

WORST-CASE-EXEC-TIME: 2.0 [seconds]

Figure 3. Example transition descriptions given to CIRCA’s planner.

In this domain, CIRCA’s planning and execution subsystems operate in parallel. The CSM

reasons about an internal model of the world and dynamically programs the RTS with a

planned set of reactions. While the RTS is executing those reactions, ensuring that the

system avoids failure, the AMP and CSM are able to continue executing heuristic planning

methods to find the next appropriate set of reactions. For example, the AMP may derive a

new box-packing algorithm that can handle a new type of arriving part. The derivation of

this new algorithm does not need to meet a hard deadline, because the reactions

concurrently executing on the RTS will continue handling all arriving parts, just stacking

unfamiliar ones on a nearby table temporarily. When the new box-packing algorithm has

been developed and integrated with additional reactions that prevent failure, the new

schedule of reactions can be downloaded to the RTS.

CIRCA’s State Space Planner builds reaction plans based on a world model and a set of

formally-defined safety conditions that must be satisfied by feasible plans [27]. To describe

a domain to CIRCA, the user inputs a set of transition descriptions that implicitly define

the set of reachable states. For example, Figure 3 illustrates several transitions used in the

Puma domain. These transitions are of three types:

Action transitions represent actions performed by the RTS.

Temporal transitions represent the progression of time and continuous processes.

Event transitions represent world occurrences as instantaneous state changes.

The SSP plans by generating a nondeterministic finite automaton (NFA) from these

transition descriptions. The SSP assigns to each reachable state either an action transition

or no-op. Actions are selected to preempt transitions that lead to failure states and to

drive the system towards states that satisfy as many goal propositions as possible. A

planned action preempts a temporal transition when the action will definitely occur before

5

#<TAP 10>

Tests : (AND (PART_IN_GRIPPER NIL) (EMERGENCY T))

Acts : push_emergency_button

Max-per : 9984774

Runtime : 2520010

#<TAP 9>

Tests : (AND

(PART_IN_GRIPPER NIL)

(EMERGENCY NIL)

(PART_ON_CONVEYOR T)

(NOT (TYPE_OF_CONVEYOR_PART SQUARE)))

Acts : pickup_unknown_part_from_conveyor

Max-per : 12029856

Runtime : 3540010

#<TAP 8>

Tests : (AND

(TYPE_OF_CONVEYOR_PART SQUARE)

(PART_IN_GRIPPER NIL)

(EMERGENCY NIL))

Acts : pickup_known_part_from_conveyor

Max-per : 12029856

Runtime : 3520010

Figure 4. Sample output from the TAP compiler.

the temporal transition could possibly occur. The assignment of actions determines the

topology of the NFA (and so the set of reachable states): preemption of temporal

transitions removes edges and assignment of actions adds them. System safety is

guaranteed by planning action transitions that preempt all transitions to failure, making

the failure state unreachable [27]. It is this ability to build plans that guarantee the

correctness and timeliness of safety-preserving reactions that makes CIRCA suited to

mission-critical applications in hard real-time domains.

The NFA is translated into a memoryless controller for downloading to the RTS. This is

done through a two-step process. First, the action assignments in the NFA are compiled

into a set of Test-Action Pairs (TAPs). The tests are a set of boolean expressions that

distinguish between states where a particular action is and is not to be executed. Each

TAP’s test expression is derived by examining all of the planned actions and finding a

logical expression that distinguishes between the states in which the current TAP’s action

is planned and the states in which other actions are planned. Some sample TAPs for the

Puma domain are given in Figure 4.

Eventually, the TAPs will be downloaded to the RTS to be executed. The RTS will loop

over the set of TAPs, checking each test expression and executing the corresponding action

if the test is satisfied. The tests consist only of sensing the agent’s environment, rather

6

Transition Descriptions Goals

Temporal
Constraints

NFA

TAPs

Verified TAP Schedule

PLANNER

TAP Compiler

SCHEDULER

Figure 5. Summary of the CIRCA state space planning process.

than checking any internal memory, so the RTS is asynchronous and memoryless.

However, before the TAPs can be downloaded, they must be assembled into a loop that will

meet all of the planned deadlines, captured as constraints on the maximum period of the

TAPs (see Figure 4). This second phase of the translation process is done by the scheduler

in the CSM. In this phase, CIRCA’s scheduler verifies that all actions in the TAP loop will

be executed quickly enough to preempt the transitions that the planner has determined

need preempting. The tests and actions that the RTS can execute as part of its TAPs have

associated worst-case execution times that are used to verify the schedule. If the scheduling

does not succeed, the SSP will backtrack to revise the NFA, leading to a new set of TAPs

and another scheduling attempt. The planning process is summarized in Figure 5.

3. Verifying State Space Plans

3.1. The CIRCA SSP

The CIRCA SSP automatically synthesizes timed discrete-event controllers for hard

real-time applications. The input to the SSP is a description of a control problem in the

form of environment dynamics (including uncontrollable processes and threats to system

safety), actions available to the controller, and goals to be realized. The SSP returns a

controller that is guaranteed to maintain the safety of the controlled system. The controller

specifies what action should be taken for each reachable system state. The controller

provides safety guarantees by meeting the timing requirements of the control problem;

these timing requirements are inferred from the model of the uncontrollable processes that

threaten the system. To determine that these timing requirements are met, our algorithm

consults a model-checker for real-time automata. This model-checking is done on an

7

incremental basis, as the controller is built.

For example, Figure 6 contains the transition descriptions for a simple UAV control

problem. The transitions describe a problem in which a UAV is attempting to follow a

normal flight path (hence the *goals* statement). However, at any time during its flight,

the UAV might be tracked by enemy radar. Some time after the initial tracking, a

Surface-to-Air Missile (SAM) may be launched. If no countermeasures are taken, that

SAM may destroy the UAV after at least a certain minimum amount of time has passed

(e.g., the minimum flight time of the missile). The UAV has available to it some evasive

maneuvers that will cause the SAM to miss the UAV, if the UAV initiates its maneuvers

quickly enough. Also, since the maneuvers divert the UAV from its nominal trajectory, the

UAV should end its evasive behavior whenever possible.

Figure 7 shows the state space resulting from a simple timed controller design that will

preserve the safety of the UAV. In the initial state, labeled “State 17” and shown as a

shaded oval, the UAV is on its normal trajectory and has no indication of a radar-guided

missile tracking it. This is a desirable state, so the controller will make no effort to leave it.

However, at any time, a radar threat could occur, moving the system into state 16. The

controller will react to this threat by taking evasive action, and maintaining the evasive

maneuvers until the missile has been avoided (i.e., until the system has entered state 24).

At this time the threat has been neutralized, and the system is free to return to its normal

flight path. This controller was automatically generated by CIRCA, and the state diagram

was generated from CIRCA data structures by the daVinci program [10].

There are several important aspects to note about this example state space model, or finite

automaton. First, note that the automaton contains loops: the UAV may be threatened by

more than one missile, and will remain in (or re-start) evasive maneuvers as long as it is

threatened. Second, observe that time is not an explicit part of the state representation.

This is critical to the compact representation of looping plans; if we included time in the

state representation, then loops would not occur and persistent reactive control against an

unpredictable or adversarial world would explode the state space. Instead, our automaton

neatly encodes the continously-reactive behavior of the UAV in a compact, efficient, and

automatically-generated form. Of course, the transitions do have temporal semantics, as

described in Figure 6.

The SSP’s temporal model was carefully designed to support reasoning about system safety

with only a minimal amount of temporal information, thus limiting the complexity of the

automata model. We associate with each transition a set of bounds on the time (∆) which

the system must dwell in the transition’s source state before the transition could possibly

occur. The model includes four different types of transitions:

Temporal Transitions — Drawn as double arrows, temporal transitions represent

uncertain processes that may lead to change, but only after at least some minimum

amount of time has passed (∆ ≥ min∆). The only temporal transitions in our simple
UAV example lead to failure, and are not shown in Figure 7 because the

8

(setf *goals* ’((path normal)))

;; Radar-guided missile threats can occur at any time.

(make-instance ’event

:name "radar_threat"

:preconds ’((radar_missile_tracking F))

:postconds ’((radar_missile_tracking T)))

;; You die if don’t defeat a threat by 1200 time units.

(make-instance ’temporal

:name "radar_threat_kills_you"

:preconds ’((radar_missile_tracking T))

:postconds ’((failure T))

:min-delay 1200)

;; It takes no more than 10 time units to start evasives.

(make-instance ’action

:name "begin_evasive"

:preconds ’((path normal))

:postconds ’((path evasive))

:max-delay 10)

;; We defeat missile in between 250 and 400 time units.

(make-instance ’reliable-temporal

:name "evade_radar_missile"

:preconds ’((radar_missile_tracking T)

(path evasive))

:postconds ’((radar_missile_tracking F))

:delay (make-range 250 400))

;; It takes no more than 10 time units to end evasives.

(make-instance ’action

:name "end_evasive"

:preconds ’((path evasive))

:postconds ’((path normal))

:max-delay 10)

Figure 6. A simple domain description for a UAV threatened by radar-guided missiles.

9

evade_radar_missile

State 23
(PATH EVASIVE)
(RADAR_MISSILE_TRACKING T)

end_evasive radar_threat

State 24
(PATH EVASIVE)
(RADAR_MISSILE_TRACKING F)

begin_evasive

temporal

event

reliable
temporal

action

State 16
(PATH NORMAL)
(RADAR_MISSILE_TRACKING T)

radar_threat

State 17
(PATH NORMAL)
(RADAR_MISSILE_TRACKING F)

Figure 7. Simple UAV controller for evading radar-guided SAM threats.

10

safety-preserving controller design makes failure unreachable.

Event Transitions — Drawn as single arrows, event transitions represent instantaneous

transitions that are out of our control, and may happen any time their preconditions

are satisfied. They are essentially the same as temporal transitions with a min∆ of

zero.

Action Transitions — Drawn as dashed arrows, action transitions represent processes

that are guaranteed to occur before the system has dwelled a certain amount of time

in the source state. That is, action transitions will definitely occur before ∆ reaches

an upper bound max∆.

Reliable Temporal Transitions — Drawn as bold single arrows, reliable temporal

transitions represent processes that are guaranteed to occur, if given enough time.

They have both lower and upper bounds on the dwell time the system must stay in

the source state before the reliable temporal transition will occur

(min∆ < ∆ < max∆).

Using this information, the SSP reasons about one key temporal relationship: preemption.

A transition t is preempted if and only if some other transition u from the same state must

definitely occur before t could possibly occur. In other words, t is preempted if and only if

max∆(u) < min∆(t). In our UAV example, the radar_threat_kills_you transition is

preempted in state 16 by the action transition begin_evasive.

Preemption is the key temporal relationship in CIRCA models because it allows the SSP to

build discrete event controllers that make certain parts of the potential system state space

unreachable. By making all potential failure states unreachable, the SSP can build plans

(controllers) that are guaranteed to keep the system safe, while also pursuing other

less-critical goals. The goal of plan verification, discussed in the next section, is to prove

that the preemptions CIRCA has planned will in fact hold true for all possible future world

“trajectories” (i.e., paths through the reachable states).

Note that the begin_evasive action does not actually disable the

radar_threat_kills_you transition: it simply begins the process of defeating the threat,

which is represented by the reliable temporal transition evade_radar_missile. If we were

to draw the Temporal Transitions to Failure (TTFs) in the graph of Figure 7, we’d see that

the radar_threat_kills_you TTF is actually preempted out of both state 16 and the

subsequent state 23. This is called a dependent temporal chain, because the amount of time

left to preempt the TTF in state 23 is not the original minimum dwell time (as it was in

state 16), but the original min∆ minus however much time the system may have dwelled in

state 16 before transitioning to state 23. Since CIRCA reasons about worst-case

circumstances, that dwell time is equivalent to the upper bound dwell time (max∆)

imposed by the planned action begin_evasive. Hence the new min∆ in state 23 is

actually 1200− 10 = 1190.

Thus our temporal model is actually non-Markovian: the temporal semantics of the TTF

out of state 23 depend on the path the system takes to get there. Naturally, this

11

complicates the process of reasoning about the temporal model, and motivates our use of model
checking to verify the required TTF-preemption properties.

3.2. Model Checking for Plan Verification
In order to verify that the CIRCA SSP’s plans are safe, we must project what will happen when they
are executed. We must determine whether the actions we have planned do, in fact, preempt all possible
transitions to failure. To do so, we use techniques developed in the computer-aided verification
research community; specifically we use techniques for verifying properties of timed automata [1].

A naive algorithm for CIRCA plan verification is easy to propose: start at the initial state(s), find all
the possible successor states, and repeat. If you ever enter a failure state, the verification has failed.

The problem with this algorithm is hidden in the definition of system state. To determine the
possible successor states, we must know how long transitions have been enabled. For example,
to determine at state 23 whether radar_threat_kills_you happens before or after evade_radar_missile,
we must know whether the former transition has been active for 1200 time units before the latter
has been active for 400 (see Figure 6).

Imagine that each transition has associated with it a timer, or “clock.” When the transition is
enabled, that clock is reset to zero and started. When the transition is disabled, that clock is
turned off. Whenever that clock goes over the lower bound on the corresponding transition, the
transition may occur; the transition is guaranteed to occur before the upper bound on the
transition (unless some other transition intervenes).

Thus we can characterize the full state of the controlled system by the full set of feature values
and a vector of artificial clock values. For example:
flight_path = evasive
radar_missile_tracking = true
clock(evade_radar_missile) = 40
clock(radar_threat_kills_you) = 700
By comparing this state against the problem definition given in Figure 6, you may readily see
that this state is safe. radar_threat_kills_you cannot take place for 500 more time units, by which
time evade_radar_missile will have preempted it.

Unfortunately, the verification problem, as naively framed, is not practically solvable. Since the
clocks are integer-valued,

2
the set of system states is infinitely large. However, the set of

interesting values is less than infinite, since there are only a finite number of decisions that need
be made. For example, all values of clock(radar_threat_kills_you) that are over 1200 are equivalent.
However, the number of relevant states may still be very large.
3.2.1. Timed Automata Representation

Fortunately, researchers in computer-aided verification have found ways to compactly represent
states like this for a class of finite state machines called timed automata [1].

2Although time is continuous, it may be discretized without loss of accuracy for any verification problem.

12

Timed automata differ in a few minor ways from SSP state machines, but SSP state

machines can be translated into timed automata. Timed automata states are composed of

a location (corresponding to an SSP state, or feature vector) and a clock-interpretation, or

vector of clock values. All of the clocks increment synchronously, but can be independently

reset to zero by selected transitions. Transitions themselves are instantaneous. Temporal

constraints in timed automata take two forms: transition guard expressions that must be

true to enable a transition, and state invariant expressions that must be true all the time

the system remains in a particular state.

Mapping an SSP state space model into a timed automaton is a fairly simple matter of

assigning different clocks to different CIRCA transitions and translating the CIRCA

transition timing constraints into timed automaton clock constraints. Once this translation

is complete, the timed automaton model can be passed to our model-checking code, the

Real-Time Analysis (RTA) module, to determine whether failure is reachable and, if so,

what path of transitions leads to failure (to guide CIRCA’s intelligent backjumping).

Figure 8a illustrates the RTA timed automaton that corresponds to CIRCA’s solution to

the UAV example of Figure 7. Briefly, the automatic translation process involves mapping

each type of SSP state space transition, as follows:

Temporal Transitions — Temporal transitions require the system to dwell in a state for

a certain amount of time before the transition may occur. This corresponds exactly

to a transition guard expression in RTA. Thus temporal edges are each assigned a

clock, and have guard expressions constraining the value of that clock to be greater

than the temporal transition’s minimum delay. The clock is reset by all edges

entering the source state of the temporal edge, if that edge does not come from a

state in which the same temporal is enabled.

Event Transitions — Event transitions can occur at any time, so they have no

associated clocks and are simply unrestricted edges in the RTA graph.

Action Transitions — Action transitions place an upper bound on the time the system

may dwell in the transition’s source state before it necessarily will move to the

transition’s sink state. In our RTA model, this corresponds to an upper bound state

invariant expression. Each instance of an action transition (action edge) is assigned a

new clock. The clock is reset by all edges entering the source state of the action edge,

if that edge does not come from a state in which the same action is enabled. The

action edge itself has no guarding clock constraints; instead, the action edge’s upper

bound is expressed as an invariant in the edge’s source state.

Reliable Temporal Transitions — Reliable temporals combine the lower-bound and

upper-bound timing constraints of temporals and actions, so their RTA mapping uses

transition guards to represent the lower bounds and state invariants to represent the

upper bounds.

13

initial transition
Guard: ()
Resets: (1 2 3 4)

RTA−Location 0
NIL
Invariant: ()

radar_threat
Guard: ()
Resets: (4 3)

RTA−Location 1
SSP−State 17
(PATH NORMAL)
(RADAR_MISSILE_TRACKING F)
Invariant: ()

RTA−Location 2
FAILURE
Invariant: ()

evade_radar_missile
Guard: (c(2) >= 250)
Resets: (1)

radar_threat_kills_you
Guard: (c(3) >= 1200)
Resets: NIL

RTA−Location 3
SSP−State 23
(PATH EVASIVE)
(RADAR_MISSILE_TRACKING T)
Invariant: (c(2) <= 400)

radar_threat
Guard: ()
Resets: (3 2)

end_evasive
Guard: ()
Resets: NIL

RTA−Location 4
SSP−State 24
(PATH EVASIVE)
(RADAR_MISSILE_TRACKING F)
Invariant: (c(1) <= 10)

begin_evasive
Guard: ()
Resets: (2)

radar_threat_kills_you
Guard: (c(3) >= 1200)
Resets: NIL

RTA−Location 5
SSP−State 16
(PATH NORMAL)
(RADAR_MISSILE_TRACKING T)
Invariant: (c(4) <= 10)

initial transition
Guard: ()
Resets: (1 2 3 4)

RTA−State 0
Location 0 = SSP−State NIL
Invar: ()
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 2) #(0 1) #(0 2) #(0 2) #(0 2)
#(0 2) #(0 2) #(0 1) #(0 2) #(0 2)
#(0 2) #(0 2) #(0 2) #(0 1) #(0 2)
#(0 2) #(0 2) #(0 2) #(0 2) #(0 1)

radar_threat
Guard: ()
Resets: (4 3)

RTA−State 1
Location 1 = SSP−State 17
Invar: ()
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)

begin_evasive
Guard: ()
Resets: (2)

RTA−State 2
Location 5 = SSP−State 16
Invar: (c(4) <= 10)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(1201 0) #(0 1) #(0 1) #(1201 0) #(1201 0)
#(1201 0) #(0 1) #(0 1) #(1201 0) #(1201 0)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)

evade_radar_missile
Guard: (c(2) >= 250)
Resets: (1)

RTA−State 3
Location 3 = SSP−State 23
Invar: (c(2) <= 400)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(1201 0) #(0 1) #(1201 0) #(1201 0) #(1201 0)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(10 1) #(0 1) #(10 1) #(0 1) #(0 1)
#(10 1) #(0 1) #(10 1) #(0 1) #(0 1)

end_evasive
Guard: ()
Resets: NIL

radar_threat
Guard: ()
Resets: (3 2)

RTA−State 4
Location 4 = SSP−State 24
Invar: (c(1) <= 10)
#(0 1) #(0 1) #(−250 1) #(−250 1) #(−250 1)
#(0 1) #(0 1) #(−250 1) #(−250 1) #(−250 1)
#(400 1) #(400 1) #(0 1) #(0 1) #(0 1)
#(410 1) #(410 1) #(10 1) #(0 1) #(0 1)
#(410 1) #(410 1) #(10 1) #(0 1) #(0 1)

evade_radar_missile
Guard: (c(2) >= 250)
Resets: (1)

RTA−State 5
Location 3 = SSP−State 23
Invar: (c(2) <= 400)
#(0 1) #(0 1) #(0 1) #(0 1) #(−250 1)
#(10 1) #(0 1) #(10 1) #(10 1) #(−250 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(−250 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(−250 1)
#(420 1) #(410 1) #(420 1) #(420 1) #(0 1)

(a) Input finite automata. (b) Clock-zone expansion.

Figure 8. The input model and clock zone analysis for the example UAV domain.

14

3.2.2. Efficient Model Checking

The critical concept for taming the complexity of timed automaton verification is an equivalence
relation (“region equivalence”) between system states [1]. This equivalence relation makes use
of the intuition that all values for a given clock are equivalent above a maximum value (the
largest constant the clock is ever compared to). Furthermore, since we are only concerned with
the reachability of various states, the actual values of different clocks in a state are not as
important as their relative values. Because the clocks are all notionally incremented at the same
rate, the relationships between the clock values upon entry to a state is sufficient to determine
which outgoing transitions are possible: a clock that is behind another cannot catch up (within a
state). Based on this equivalence relation, it can be shown that any timed automaton (SSP plan)
has only a finite number of states.

3
Therefore, the problem of determining reachability (SSP plan

verification) is decidable.
A further optimization is possible, to make verification practical. The key intuition behind this
optimization is that all reachability questions hinge on pairwise comparisons between clock
values. In order to determine whether or not one transition can occur, we compare a single clock
against a constant. To determine whether one transition occurs before another, we only need to
determine which will reach its associated constant first. To answer this question, we only need to
know the difference between pairs of clock values (since the clock values increase at the same
rate).
Therefore, we can compactly represent clock regions using a difference-bound matrix [4] whose
entries represent bounds on the difference between pairs of clocks and between single clocks and
a dummy clock whose value is always zero. Difference-bound matrices have two advantages.
First, they provide a compact representation for equivalence classes of clock-states in timed
automata. Second, they also have a canonical form, derived using any standard all-pairs shortest-
path algorithm [4]. Putting the associated difference-bound matrices into canonical form makes it
easy to determine when two automaton states are equivalent. Recognizing equivalent states is, in
turn, necessary in order for reachability search to terminate.
Figure 8b illustrates the reachability verification of the SSP plan given in Figure 6, optimized by
the use of difference-bound matrices. Space limits preclude us from describing the difference
bound notation in detail. However, a simple examination of Figure 8b shows one notable aspect
of the RTA verification: there are two RTA states (3 and 5) that correspond to the SSP state 23.
That is, the RTA algorithm has recognized the distinction between the two routes into SSP state
23 (see Figure 7) as being a temporally significant difference. The temporal transition to failure
from state 23 will have different amounts of time left on its clock depending on whether we enter
from state 16, where it was already enabled, or state 24, where it was not enabled (see Figure 8a,
RTA-locations 5 and 4). Thus the RTA algorithm is unrolling the important paths through
dependent temporal

3More precisely, there are only a finite number of state equivalence classes, and state equivalence classes
are sufficient to determine reachability.

15

chains, checking reachability of failure by removing the original non-Markovian temporal

semantics.

For even modest sized SSP problems, the computational costs of verification can be

prohibitive. In the next section, we discuss how to dramatically reduce those costs by

performing the verification incrementally, as the planning process proceeds.

4. Incremental Verification

4.1. Background

CIRCA uses model-checking verifiers during its planning process to ensure that its plans

will in fact satisfy their performance guarantees. CIRCA verifies partial plans as it is

generating them, so that it does not try to complete partial plans that are already unsafe.

Using verification inside the planning loop also makes CIRCA’s controller synthesis more

efficient. First, by relying on the verifier to consider every possible sequence of states and

transition delays, the planner can reduce its search space considerably by considering

time-abstract world states. Second, the counter-examples (in the form of state and

transition sequences) are used to inform the backtracking done by the planning search.

Third, the planner’s time abstraction alone is insufficient to accurately determine which

world states in the search space are reachable, so without a verifier it must use a liberal

notion of reachability to maintain safety (sometimes considering some states that are not,

in fact, reachable). The verifier can determine reachability exactly and returns this

information to the search, which can avoid wasting computational effort planning for

unreachable states.

These benefits have a cost: in general, verification time dominates planning time by a wide

margin in CIRCA planning problems. There are several possible paths to improvement:

• Code optimization: Over the years, we have invested substantial effort in low-level
optimization of the algorithms and data structures relevant to the inner-loop of plan

verification.

• Less frequent verification: We have considered (but not yet implemented) reducing
the frequency of verification during planning. In this case, the planner will sometimes

do unfruitful work, but this wasted effort may be very cheap relative to the cost of

verification at every iteration.

• Approximate verification: The model-checking community has developed useful
algorithms for approximate model-checking, which are more efficient than the exact

equivalents. It would be interesting to pursue this direction for CIRCA, but

understanding the resulting loss of completeness would be a challenge.

• Temporal inclusion: It is possible to identify verifier states which are included by the
temporal bounds of an existing verifier state. At the moment, we only match verifier

states if they have identical difference-bound matrices.

16

• Re-using partial computations: The partial plans developed by CIRCA change very
little between verification iterations. We could save a lot of computational effort by

saving the results of previous verifications and only verifying the parts of the model

that have changed.

We have pursued this final approach, which we call “Incremental Verification” with great

success.

4.2. Intuition

During the planning process the planner and verifier maintain separate graphs representing

possible future world states. For the purposes of this discussion, the principal difference

between the graph used by the planner and that used by the verifier is the representation

of time. The planner ignores time, except as it is reflected in possible sequences of states

and transitions. The verifier dynamically derives a compact representation of the relevant

temporal state by computing bounds on the length of time each of the enabled transitions

out of a state have been active. Accordingly, each planner state corresponds to a set of

states in the verifier’s graph, i.e., the set of states with the same feature values, but

different temporal characteristics. For example, although the planner knows only that there

is a heat-seeking missile heading for the aircraft, the verifier must know whether there is

enough time remaining for a countermeasure to have an effect. If T is the time required for

the countermeasure, it will have one state in which T or more seconds remain before the

missile is expected to strike the aircraft and another in which less than T seconds remain.

Furthermore, the verifier treats any frontier state in the planner’s graph (i.e., any

unplanned state) as a safe, sink state.

In order to continue the verification process incrementally, then, the verifier must (1)

identify states affected by the last planning step and (2) update those states to reflect the

modifications made by the planner. To support (2), the verifier must also maintain some

additional information for the frontier states, since they are now continuable.

4.3. Implementation

As described in the previous section, the incremental verification algorithms differ

substantially from the previous versions in three ways:

• the treatment of frontier states,

• the identification of states affected by a planning step, and

• the updating of states affected by a change to the plan.

4.3.1. Treatment of Frontier States

In prior implementations, frontier states in the verifier graph (i.e., states that correspond

to unplanned states in the planner’s graph) could be treated as safe sink states by the

17

verifier. If the frontier states are believed to be failure states, then the planner would have

declared failure before calling the verifier. In the incremental version, these states must be

treated as potentially continuable and sufficient information from creation time should be

stored for later use.

For the incremental case, the relevant pseudo-code is:

1. Create new verifier state, VS.

2. Lookup corresponding planner state, PS.

3. If PS is planned, continue as before.

4. If PS is not planned:

(a) Create a state continuation, C, containing an index to PS, the preceding verifier

state, and the incoming transition.

(b) Put C on the open list.

For the sake of efficiency, the continuation also contains a partially computed difference

bound matrix. Not surprisingly, the temporal extent of a verifier state depends on the

preceding state, all of the preceding state’s outgoing transitions, the transition leading into

the state, and all of the transitions leaving the state. Since the transitions leaving the state

will not be completely known until the corresponding planner state has been assigned an

action, the difference-bound matrix cannot be computed. However, the computation of the

difference-bound matrix can be structured so that the factors that depend on the preceding

state can be used to create an intermediate result in common for all of its successors. This

partial computation is performed at the creation of the continuation and stored in the

continuation.

4.3.2. Identifying Affected States

Identifying the verifier states affected by a change in the plan is straightforward, if planner

state indices are stored with continuations. When an action is assigned to a planner state,

any continuations corresponding to that planner state will need to be updated. Any

successors to the continuations will be either:

• a new continuation (i.e., the planner state is unplanned), or

• a new verifier state (i.e., the exact combination of difference-bound matrix and
feature values has not been encountered before, or

• an existing verifier state.

In the first case, the verifier will create a new continuation. In the second, it will continue

the expansion of that branch of the graph. In the third, it will close the state and continue

search elsewhere. In any of these cases, it is not necessary to pre-compute whether the

18

states are affected by the plan change. The normal behavior of the verifier algorithm is

sufficient.

In the case of splits, only the split state must be identified before the update is performed.

Other affected states will be modified in the course of the state update.

4.3.3. Updating Affected States

Updating the verifier states after an action assignment is a simple matter of continuing the

computations that were suspended at the creation of the continuation. Once an action has

been assigned by the planner, it is possible to find the set of transitions leaving the

corresponding verifier states. There is one slight complication. The semantics of the verifier

graph require that the transitions which reset (i.e., whose elapsed time clocks are set to

zero) depends on the action chosen in that state. This list of reset clocks is computed and

the normal state creation machinery is engaged.

In the case of states split by the planner (i.e., made less abstract), updating the affected

states is slightly different. In this case, multiple new continuations must be created for each

of the affected states, and the planner-state indices properly updated.

4.4. Results

We have merged the incremental verification code into our baseline and are currently

deriving performance results. The results are encouraging: for at least one domain with

relatively complex verification problems but relatively little backtracking, the incremental

verification system runs several hundred times faster than the non-incremental verifier.

Incremental verification has passed all of our regression tests, dramatically improving

performance on many of the test domains.

The older RTA verifier algorithm was made into an incremental version that retains

verification information during forward search, allowing forward growth of the CSM’s state

space to be verified by simply extending the traces from prior verification runs. When the

search algorithm backtracks, the cached verification (trace) information is discarded and

the verifier starts from scratch again.

This incremental behavior has provided dramatic speedups in some cases, especially when

a large number of states are involved with relatively little backtracking required. In one

case, planning time was reduced from over five minutes to under 20 seconds. However, the

results are not uniformly positive: it appears that the culprit paths returned by the

incremental version can correctly be different than those returned by the non-incremental

version, and in some cases this leads the search into different paths that are less effective.

We are investigating in more depth to understand this behavior.

The incremental version of the more powerful CIRCA-Specific Verifier (CSV) provides

similarly impressive results on many domains. Again, the results are not uniformly positive

because of different culprits.

4.5. Performance versus Kronos

19

1

10

100

1000

10000

100000

1e+06

0 5 10 15 20 25

C
um

ul
at

iv
e

T
im

e
(m

se
c)

Scenario

Kronos internal
CSV

CSV incremental

Figure 9. The incremental CIRCA-Specific Verifier is faster than Kronos on all but
two domains.

Since Kronos can perform more general verification tasks than CSV, this comparison

cannot be completely aligned. However, for the types of verification we need in CIRCA,

Kronos and CSV can operate on very similar models. After communications with the

Verimag researchers, we were able to fix problems with an earlier version of our

“multi-model” Kronos interface. This is distinct from the regular Kronos interface, which

we have used without problems for several years. The multi-model interface is a more

accurate model of the verification problem addressed by CSV, and thus allows us to

directly compare the verification results of Kronos and CSV. As illustrated in Figure 9, the

incremental CSV was able to significantly outperform Kronos, requiring one to two orders

of magnitude less verification time across 21 of 23 different test domains (our regression

testing suite). We are currently investigating the characteristics of the remaining two

domains to see why CSV did badly. In addition, we hope to obtain the highly-optimized

Kronos Difference Bound Matrix (DBM) libraries and reap further speedups.

4.6. Patent

In July 2001, Honeywell management decided to pursue a patent submission for the

invention disclosure entitled “Incremental Automata Verification Technique”. A copy of

the invention disclosure was filed with AFRL. In August 2001, our patent application was

drafted. We then reviewed the application and submitting comments to the lawyers, who

20

will develop and circulate a second draft prior to submitting the application. In September

2001, we received the second draft of our patent application, and formulated the final

round of comments before submission in October. In October 2001, our patent application

was submitted after a third round of revisions. As of July 2003, our patent application is

still in process.

4.6.1. Future Work

While incremental verification has already resulted in great performance improvements,

further improvements should be possible. For example, the current implementation of

incremental verification only uses previous computations when the planner has extended

the current plan by adding a transition or splitting an abstract state. When the planner is

forced to backtrack, the verification starts from scratch. It is certainly possible, and

probably profitable, to modify the verification graph to reflect the planner’s backtracking,

and restart verification from there.

5. Partial Dynamic Abstraction and Heuristic

Improvements

MASA-CIRCA uses a state space search formulation called Dynamic Abstraction Planning

(DAP) to construct control policies [12]. DAP was developed in an effort to significantly

reduce the number of explicitly represented states within the search space, thus reducing

the overall search time and memory overhead. DAP works by starting with a universally

abstract state, one that subsumes all possible non-failure states within the search space,

and analyzing it to determine if there are any possible transitions to a failure state. If such

a transition exists, DAP chooses a predicate to split on. Splitting on a predicate produces a

set of states, one for each value in the split predicate’s domain. For example, assume a

predicate A-in-room, which tracks the location of object A, can accept the values room1,

room2, and room3. An abstract state may not include the A-in-room predicate, and would

thus be considered to match (subsume) all of the possible locations of object A. If the SSP

splits that state on the A-in-room predicate, it replaces the original state with three new

states with the following ground values: (A-in-room room1), (A-in-room room2), and

(A-in-room room3). The SSP heuristic guides the choice of when to split on different

predicates.

DAP’s development was motivated by a desire to reduce the number of states generated in

the process of creating a controller, and it does this by only splitting on predicates that are

relevant to avoiding failure or achieving goals. However, we noted that DAP does not

perform well on a benchmark robot navigation and object-delivery domain [15, 33]. The

domain consists of a set of rooms connected by doors, a set of objects, and a robot that is

capable of opening doors, moving from room to room through open doors, and picking up

and putting down the objects. The goal is to move the objects from their initial positions

into specified goal positions and to leave the robot in a predefined position. The domain

differs from its classical form with the addition of a random process that closes the doors.

21

An analysis of DAP’s performance on this domain found that the domains of the predicate

were relatively large, producing many new states with each split done by DAP. As a

consequence, the search space grows rapidly and quickly overwhelms the search engine.

This motivated research in developing a search method that was insensitive to the size of

the predicate domains.

5.1. Partial Dynamic Abstraction Planning (pDAP)

DAP’s downfall is the aggressiveness by which it splits on a predicate, generating not only

the states with predicate value of interest, but a state for every other potentially-irrelevant

predicate value as well. This observation led to the development of a least-commitment

form of DAP called pDAP, the Partial Dynamic Abstraction Planner. pDAP avoids the

proliferation of states that affected DAP when working on the robot domain through a

modified splitting method. Instead of replacing the original state with a set of states for

each legal ground value of the predicate, pDAP replaces the original state with two states:

one with a ground version of the predicate with the relevant value; the other an abstract

state whose split predicate matches every other value of the predicate.

pDAP produced significant improvements in solving problems in the robot domain.

However, it too had unexpected difficult finding solutions within this domain. Analysis

showed that pDAP, like DAP, was also producing a large number of irrelevant states. This

time, the production of irrelevant states could not be attributed to an overly aggressive

splitting method, but could only be due to a weak heuristic guiding the splitting process.

As a consequence, a revised domain-independent heuristic was developed to guide the

search.

5.2. Regression Graph Heuristic

The heuristic developed is based on McDermott’s Regression Graph heuristic [22]. The

process works by taking the goal of the planning problem, breaking the goal into its

component literals and regressing the literals through actions that achieve them. The

process then recurses on the preconditions of the action. Identical literals are joined to

produce a possibly cyclic graph that is fully specified. Once the regression graph has been

expanded, literals true in the current state are marked and path lengths from the goal

literals to current state literals are calculated. An operator on the shortest path is then

selected by the heuristic.

MASA-CIRCA uses this heuristic in essentially its original form when it is looking for

applicable actions. However, the heuristic has been modified to better identify good splits

in the current state. The basic process works as follows. First, build the regression graph

looking for good actions to apply to the current state. If an action is found, return it.

However, if no action is found (in DAP and pDAP, an action can only be applied if all its

preconditions are fully ground), then mark all literals that are abstractly specified in the

current state (e.g., not fully ground) and re-calculate the paths as if they were true in the

current state. The abstract literal with the shortest path to the goal is then selected as a

22

split candidate.

This revised regression graph heuristic produced mixed results. Some problems were solved

very quickly, but on many problems, pDAP was still splitting on many irrelevant features.

An analysis of the heuristic showed that early on in the search, when most of the literals

are not ground in the current state, the heuristic was unable to decide which of a large set

of literals with identical path lengths to the goal were relevant and which were not relevant.

The following minor modifications to the scoring method addressed this problem.

Prefer goal literals — Goal literals that eventually need to be split upon at some time,

so if there is no better option, split on a goal.

Prefer literals in initial states — If nothing else is better, try to reduce the difference

between the current abstract state and the initial states.

Prefer literals that support many paths — If a literal is on more than one possible

path to the goal, then give it greater preference, since it is most likely part of a

solution.

The resulting heuristic is very effective in the robot domain, nearly eliminating irrelevant

splits produced by pDAP. However, further analysis has shown that the modified regression

graph heuristic is also very effective in guiding DAP, to the point where the additional

overhead incurred by pDAP to justify each split, causes pDAP’s runtimes to be

significantly longer than DAP’s.

The result of these modifications allows MASA-CIRCA to efficiently solve problems within

Kabanza’s [15] modified robot navigation and object-delivery domain and compare

favorably with both Kabanza’s and Pistore & Traverso’s [33] results.

6. Probabilistic State Space Planner

A real-time agent with limited perceptual, computational and actuator resources must

carefully allocate these resources at execution time to do the best job it can in monitoring

for aspects of the world state and responding quickly to emerging hazards in its complex

and dynamic environment. If the resource-limited agent allocates more of its resources (or

some of its resources more frequently) to monitoring for some states (or state features),

then it will be less capable of tracking others successfully. Similarly, it cannot be assumed

to execute all the resource-demanding actions equally well. Designing an effective schedule

of monitoring for and responding to the most important situations at the right times with

the available resources is thus a complex optimization problem.

To make worst-case performance guarantees, an agent must ensure that it has set aside

sufficient resources for monitoring and responding to the important situations. Those

resources are only fully utilized, however, when the situations requiring remediation

actually occur. In a sense, monitoring for and being prepared to react to situations that do

not arise is, retrospectively, a waste of resources. When pushed past the limits of its

23

capabilities, a reasonable heuristic for an agent to shed some of its load is to remove the

monitoring and response activities that are most likely to waste resources. In other words,

all other things being equal (including the costs of failing to respond to various situations),

an agent should preferentially monitor and respond to situations that are more likely to

occur over those that are less likely to occur.

However, determining the likelihood of a real-time agent encountering a particular

situation or a state can be challenging because the likelihood is dependent not only on the

actions the agent should perform, but also on its choices of how frequently it checks

whether to perform them. By definition, a dynamic environment is one in which the state

can change via events outside the agent’s control. In general, the sooner a real-time agent

detects and responds to a situation, the less opportunity there is for the environmental

dynamics to intervene, and the higher the chance that the agent is going to meet its

deadlines. The probability of encountering a state thus depends on a complex temporal

convolution between the agent’s plan and the exogenous events.

One contribution of our work is that we have developed a probabilistic action and event

model to efficiently approximate the transition probabilities for a real-time agent. We use

this to augment the State Space Planner (SSP) to permit the estimation of probabilities of

encountering situations. The resulting Probabilistic State Space Planner (PSSP) supports

a second contribution, which is our strategy for using these state probabilities to prioritize

resource expenditures when the agent cannot be prepared for all eventualities. Finally, a

third contribution of our work has been to streamline the search through the alternative

reachable state spaces by improving the backtracking and pruning techniques employed in

the search [5].

6.1. Technical Advances

The details of our methods for modeling, computing, and using state probabilities in the

PSSP are covered in more depth elsewhere [17], [19], [18]. Here we summarize them at a

high level.

State transitions, whether caused by an agent’s own actions or by external events, are

modeled by representing the state features that must hold before the transition (the

preconditions) and those that are changed after the transition (the effects). We augment

the model to capture stochastic and temporal aspects by giving each transition model a

probability function describing its likelihood of occurrence over time. Specifically, let T be

the random variable denoting the time that a transition fires since it was enabled f(t). t is

the transition time, ranging from 0 to infinity. To model the execution of a real-time agent

as a continuous-time stochastic process, we assume that all transitions are mutually

independent. After numbering the transitions in a state, we denote the i-th transition by

tti. The transition probability of tti, relative to all other applicable temporal transitions in

a state, is the probability that its firing time, Ti, is the minimum, T , among all transition

times.

We represent the time-dependent probabilities with what we call probability rate functions.

24

For a (temporal) transition tt, a user specifies a probability rate function that specifies, for

each time interval h since the transition has been enabled, the probability that tt fires in

that hth time interval, given that the transition has not fired before in any of the previous

h− 1 time intervals. For example, if a fair coin is flipped each second, the probability rate
for the “heads-to-tails” transition is 0.5 over each second, regardless of how much time has

elapsed, given that the state is still “heads” after the flips so far.

To compute transition probabilities, we approximate the “true” continuous probability

(rate) functions of the transitions by piecewise constant probability rate functions. To

calculate the transition probabilities for a set of concurrent events and actions that match

a state s, we compute the dependent probability rate function for each transition enabled

in the state in each time interval. A dependent probability rate function of a transition in

state s can then be computed that describes the probabilistic temporal dynamics of a

transition in that state when there are other concurrent applicable transitions. With

transition probabilities computed in this way, we can compute the state probabilities of the

states in a stochastic process of a real-time agent by computing the state probabilities of

the states in the corresponding embedded Discrete Time Markov Chain using standard

Markov techniques.

These capabilities for computing state probabilities are exploited in the overall controller

synthesis process as follows. After an agent’s Probabilistic State Space Planner generates a

tentative plan, the plan is passed to the scheduler, which tries to schedule the actions

according to the resource constraints of the execution platform. If all planned actions are

schedulable, then it is done. Otherwise, the PSSP computes the state probabilities and the

actions planned for the least likely states are removed in increasing order of their state

probabilities until the remaining set of actions is schedulable.

The intuition is that if an agent has a very low probability of reaching a state, then

ignoring the hazards or Temporal Transitions to Failure (TTFs) in this state does the least

harm (assuming all failures are equally bad). We call this the unlikely state (cutoff)

strategy. The agent’s failure probability increases by no more than the probability of the

state the action was planned for. Note that, if all failure states are not equally bad, our

strategy can be modified to accommodate domains with varying degrees of failure. For

instance, instead of ignoring the least likely states, we could ignore the least deleterious

(disutility) states weighted by their state probabilities.

It could well be the case that the risk involved with ignoring the lower-probability states is

more broadly unacceptable. It is for this reason that the PSSP is just one component of

our larger CIRCA architecture. Specifically, the AMP is responsible for assessing the “big”

picture, and determining whether to adopt the PSSP recommendations, or to reformulate

the controller synthesis problem in some other way. The AMP and PSSP thus co-routine

to negotiate on a synthesized controller that meets the mission needs as represented by the

AMP, while at the same time meeting the execution platform constraints as represented by

the CSM (the PSSP and the scheduler).

25

The above assumes that an agent generates an initial tentative plan. Planning involves a

forward search through a potentially large state space, and the space can include various

deadends as the planner discovers and has to avoid action choices that lead down paths

along which failure cannot be avoided. In general, therefore, this can be a costly,

exponential search. We have developed techniques for dependency-directed backtracking,

and for pruning portions of the search space based on ideas from constraint satisfaction

search, that lead to substantial planning speedups [5].

6.2. Evaluation and Demonstration

We have evaluated the quality and effectiveness of the PSSP [17]. First, we have shown

analytically and demonstrated empirically that the piecewise linear approximation that we

use correctly estimates probabilities for Markovian systems, where the estimates improve

(and approach the true values) as the discretization becomes increasingly fine. For

non-Markovian dynamics, we have developed a Monte Carlo simulation-based tool for

estimating state probabilities. We have also coupled both approaches together, so that the

more efficient methods can be used for most of a reachable state space but simulation can

be employed for the subspaces that are non-Markovian.

We have demonstrated the efficacy of the PSSP in a UCAV domain. Specifically, we have

looked at a problem in which the UCAV cannot monitor and respond to all types of missile

threats. We have shown that a naive approach (corresponding to our earlier methods for

dropping tasks in overconstrained cases) can make very poor choices because it only

considers the likelihood of a transition without considering the likelihood of reaching a

state where that transition can even occur. Our new methods do consider state likelihood,

and thus generate schedulable control plans that minimize the risk faced by the

resource-limited UCAV.

The University of Michigan and Honeywell have integrated the PSSP capabilities into the

overall architecture by defining an API through which the AMP and the CSM

communicate. This permits the swapping of different CSM modules into the architecture.

Using this interface, we have implemented and demonstrated a simple negotiation process

between the AMP and the CSM. In this process, the AMP provides a controller synthesis

specification to the CSM, which in turn attempts to formulate a schedulable controller that

meets the specifications. Because the problem overtaxes the execution platform, the CSM

fails, but using the PSSP it discovers a probability threshold such that, if it can ignore

threats in states that are unlikely to be reached (whose probabilities of being reached are

below the threshold), then a schedulable controller is likely to be formulated. The AMP

receives this information, and can decide to update its controller synthesis specification and

repeat the request.

Furthermore, we have also demonstrated how this negotiated interaction between the AMP

and CSM can serve to support time-critical planning activities. Specifically, if the AMP is

faced with synthesizing a controller quickly, it can provide the PSSP with a specification

with a relatively high probability threshold. The PSSP can use this to quickly generate a

26

controller that only includes actions for the most likely threats to be realized (for states

whose probabilities meet or exceed the threshold). The AMP can iteratively reduce the

threshold, in an “anytime” manner, until either a sufficiently safe controller is formulated

or until the deadline for adopting a controller is reached.

Finally, the improved backtracking and pruning techniques have been incorporated into the

planner, and evaluated over a set of a few thousand randomly-generated cases. The

improvements led to some planning speedups of over an order of magnitude [5].

7. Resource-Driven Subgoaling

When the demands placed on a controller to be synthesized outstrip the capabilities of the

execution platform, something must be sacrificed. Section 6 describes a strategy for

ignoring the least-likely threats to arise so as to concentrate on guaranteeing actions to

preempt the most likely threats. An alternative to making such probabilistic guarantees is

to instead make temporal guarantees: that failures cannot be reached from states that will

be reached soonest, or before some particular action or event occurs. That is, rather than

guaranteeing safety indefinitely from the most likely threats, the system could guarantee

safety in the near term from all threats.

Resource-driven subgoaling attempts to group states together based on when they can

occur, with particular emphasis on being able to control transitions from one group of

states to another. Specifically, the goal is to analyze the graph of reachable states and

transitions among them, and break that graph into a series of subgraphs that correspond

to different “phases” of the overall mission. Transitions from one phase to another should

be under the control of the agent. For example, an overall mission of getting a jet from a

gate in Detroit to a gate in Minneapolis could require a very complicated controller that

could not be implemented. However, breaking the mission down into phases (such as

taxiing from the gate to the runway, taking off, cruising, landing, and taxiing) might

succeed since the set of actions and threats in each phase is more manageable.

7.1. Technical Advances

We have developed algorithms that decompose a mission, represented by a state graph

with an initial state and a goal state, into phases which are separated by future actions

that the CIRCA system can perform. Each phase consists of an initial state and one or

more subgoal states. Because a phase generally involves fewer states, hence TTFs, hence

actions to schedule to preempt TTFs, CIRCA can make more stringent guarantees about

failure avoidance within a phase than it can if it must plan for the whole mission at once.

Our algorithms mark the states within the state graph such that states that can be reached

through temporal transitions or through actions that preempt temporal transitions are

marked as being within the same mission phase (what we refer to as being part of the same

mega-node). Mega-nodes are separated by action transitions that have no timing

constraint on them. The graph-coloring process by which states are marked (mega-nodes

are generated) is polynomial in the number of reachable states. See [34] for details of the

27

algorithm and examples of its execution.

7.2. Evaluation

We have conducted a number of experiments to study our algorithm. First, we have looked

at whether it can process relatively large state spaces to find mission phases relatively

quickly. Our most recent implementation of the algorithm can process a state space of 1000

states in less than one second by exploiting polynomial-time graph-searching algorithms.

Second, we have investigated the conditions under which finding mission phases is likely to

be successful. The premise of our algorithm is that various clusters of states are

disconnected from other clusters except through a single thread corresponding to an

agent’s volitional action. Not surprisingly, our empirical analyses confirm that a greater

number of non-volitional transitions impede the discovery of useful phases, since they make

all states reachable beyond the control of the agent. Similarly, as the number of transitions

to failure rises, the number of actions that an agent must do grows, leaving fewer

opportunities for volitional movement between phases.

Using the defined API for communication between the AMP and CSM, the resource-driven

subgoaling algorithm generates output that can be supplied back to the AMP. The output

is essentially a list of phases, represented as smaller controller-synthesis problems specifying

initial and goal states corresponding to the ways in which each phase could be entered and

then left for a subsequent phase. Given this information, the AMP can feed to the CSM

portions of the mission a phase at a time to permit the overall mission accomplishment

with higher guarantees of success, since each phase is more likely to be fully schedulable.

8. Constrained Markov Decision Processes

In a number of respects, the problem that CIRCA faces in synthesizing a controller is

similar to the creation of a control policy in Markov Decision Processes (MDPs). Besides

the fact that the underlying processes about which CIRCA must reason are often

non-Markovian, a second significant difference is that traditional MDPs are not concerned

with resource-limitations of the policy execution platform. In CIRCA, such limitations are

of central concern. Thus, while a traditional MDP can focus on developing an optimal

policy by combining optimal action choices for different situations, this cannot happen with

CIRCA because the resources devoted to optimizing some part of the policy mean that

some other part of the policy will lack sufficient resources to be optimally addressed.

Yet, the principled underpinnings of MDPs, the explicit representation of expected utilities,

and the tools for optimization, present an attractive counterpoint to the generally heuristic

methods used by CIRCA to derive a satisfactory controller with no assurances about

optimality. We have begun an investigation into whether MDP techniques can be adapted

for CIRCA needs, and what costs and benefits will result in doing so.

28

8.1. Technical Advances

We have developed a characterization of a variety of types of resource-limited constraints

that could be placed on the policy search process, including constraints on executing a

policy (such as limits on the power available to a robot carrying out a policy) and

constraints on operationalizing a policy (such as limits on the size or complexity of a policy

that an agent can effectively use to map states to actions). Conceptually, the latter

resembles the execution resource limits respected by CIRCA, in which only a limited set of

periodic TAPs can be scheduled to meet their timing requirements.

Some types of constraints can be dealt with by extending prior work on Constrained MDPs

(CMDPs). CMDPs develop policies which, in the expected case, will not overconsume

particular resource costs. However, in keeping with CIRCA’s traditional concerns about

catastrophic failure, we have studied the case where overconsumption should be avoided

much more emphatically than just in the “expected” case. For example, if the policy is for

a UCAV, there is definitely a significant cost in being in midair when the fuel runs out.

We have developed techniques that augment past linear programming algorithms for

CMDPs to incorporate constraints that reflect a user-provided probability of overconsuming

a resource [6]. The lower the probability that a user wants to tolerate, typically the more

conservative the resulting policy is. In the extreme, an UCAV might choose not to take off

at all to avoid any risk of running out of fuel while airborne! More generally, our methods

support trading off utility (goal achievement) for safety (avoiding overconsumption).

We have also developed techniques involving mixed integer programming to work with

constraints on the kinds of policies that can be operationalized. For example, some

architectures might only support deterministic policies (that map each state to a single

action, rather than permitting some weighted randomization among actions). While a

randomized policy might be optimal, mixed integer programming techniques can be used

to find the optimal deterministic policy in an efficient manner [7],[8].

8.2. Evaluation

We have run experiments over a number of random problems (50 problems per data point)

where for each data point we averaged the probability of resource overconsumption and the

utility received, as we increase the allowable probability of overconsuming a resource. The

results (see [6]) confirm that our techniques do ensure that the risk of resource

overconsumption is no greater than the user-specified bounds. In fact, often it was much

lower. Because utility is generally positively correlated with resource consumption, it is not

surprising that utility (when resources are not overconsumed) is lower for our more

conservative method than traditional methods for CMDPs and unconstrained MDPs. We

are currently seeking means for establishing constraints that still ensure that

overconsumption occurs below the specified probability, but not so far below as our current

methods so that we can accrue more utility.

More broadly, we have begun to put together analytical results across a spectrum of

29

different types of constrained MDP problems. In particular, we have been able to show

that, while the execution constraints studied above permit algorithms that are P-complete,

other constrained problems appear to be NP-complete, including problems of being

constrained to deterministic policies, and of being constrained in the total utilization of

actions in a policy [8].

9. Communication to Reduce Uncertainty

As was mentioned previously (Section 6), an agent wastes precious resources of its

execution platform if it includes in its synthesized controller monitoring and response

actions for situations that do not arise. Clearly, if an agent can establish that a situation

cannot arise, then it can safely remove the corresponding reaction to that situation from its

control plan.

One way in which an agent can do this is through communication with other agents [9]. An

agent might prepare for all states it may reach as a result of not only its own actions and

the environment transitions, but also as a result of the possible actions that other agents

are capable of taking. Just because an agent is capable of taking an action, however, does

not mean that it will take that action; anticipating all possible actions on the part of other

agents requires an agent to prepare for states that might never arise.

It can therefore be to an agent’s advantage to engage in a dialogue with other agents to

find out which of their potential actions in a situation they have actually decided that they

will do. That is, to learn about aspects of their synthesized controller. Armed with such

knowledge, an agent can begin to prune away portions of its state space, and hence prune

actions that it feared it would need to take to preempt potential failures.

9.1. Technical Advances

We have developed a protocol, which we call the Convergence Protocol, that enables agents

to prune (ignore) states that others can tell them are unreachable, and thus for which

reactions need not be planned and scheduled. Details of the protocol and its evaluation are

presented in [20, 21].

Using this protocol, an agent first determines whether it cannot schedule all of the TAPs

that it considers vital for safety. If it can schedule them all, then it need not initiate any

further communication. However, if it is indeed overconstrained, then the agent will

inspect its reachable state graph and find the states from which some other agent appears

to have a choice of actions. It picks one of these, and inquires from the corresponding agent

about the action that the agent has decided it will do if the state is reached. Upon

receiving this information back, the agent can essentially mark the transition probabilities

of the other actions as zero, and remove from its state graph any states that are thus

rendered reachable with a probability of zero! Actions associated with those states are also

removed, and the scheduling problem for the remaining actions might be made easier.

The agent repeats this process until it can schedule all of its remaining actions, or until it

30

has no more states about which it is uncertain of others intentions. In that latter case, it

can resort to the use of state probabilities to decide which actions to drop, as in Section 6.

How an agent decides which state to inquire about next depends on which heuristics it

adopts. It could choose randomly, but more informed heuristics attempt a greedy strategy

of trying to ask about states whose answers will most effectively trim actions from the

necessary set of actions. We have developed and experimented with several candidate

heuristics.

In addition, if after completing the use of the protocol the agents still cannot guarantee all

of their actions, an alternative to using the probabilistic methods and incurring consequent

risk is to instead consider alternative combinations of actions, either for themselves or

others. This provides an opportunity for not only communicating to inform others, but

also communicating to negotiate with others to get them to change their plans. However,

the space of possible joint plans is combinatorial in size, and so a thorough exploration of

this space is typically infeasible. We have been developing tractable negotiation methods

that employ hill-climbing techniques for exploring a promising portion of this space.

9.2. Evaluation and Demonstration

To evaluate the merit of the Convergence Protocol, we have generated a set of random

domains. Each domain has a random number of agents from 2 up to a maximum of 10.

Each agent has its own knowledge base. The knowledge base has 7 private and public

binary features (T/F) total. The number of public features in a domain is random. It

measures how tightly coupled the agents are for that domain, i.e., how many features they

have in common. As any public feature is shared by all agents, the knowledge bases for any

given domain have the same number of public features. There are 15 private and public

actions combined, and 7 private and public temporal transitions combined for each agent.

The compositions are random. The actions and temporal transitions are generated such

that they invert the values of a random number of features. All knowledge bases for a

domain contain the same set of public temporal transitions and public actions.

We have generated 1626 agents for 402 domains with which we perform our experiments.

The number of agents that are able to schedule for all their TAPs before running the

Convergence Protocol is 202 (12.42%). The number of agents that are able to schedule for

all their TAPs after running the protocol is 704 (43.30%). In other words, 502 (30.87%)

agents become able to schedule for all their TAPs. For those agents that still fail to

schedule for all actions, they, nonetheless, drop fewer necessary actions (by raising the

probability threshold) than they otherwise would have needed to. For our experiments, the

reduction in the number of necessary actions dropped is on average 59.55% with a standard

deviation 39.85%. As a result, the agents’ utilities are not as compromised as they would

otherwise be without running the Convergence Protocol.

We have also conducted a number of other experiments and analyses [21]. We have also

investigated the features of a set of CIRCA knowledge bases, and of reachable state graphs,

that correlate to effective employment of the Protocol.

31

Finally, to demonstrate and illustrate the protocol, we have generated a series of video clips

that show how an agent builds its own reachable state space, and then engages in the

protocol to trim from this space the states that turn out to be unreachable based on the

action choices of the other agent. The video clips are available at ../UMDemo2003, along

with a set of Powerpoint slides that explain the demonstrations.

10. The Adaptive Mission Planner (AMP)

In the preceding SA-CIRCA project, we developed requirements for the AMP and

investigated two existing planners, SIPE-2 and Prodigy, as possible starting points. Neither

provided the flexibility and power required, so we developed an entirely new AMP in this

project. This has turned out to be a useful and compact module that was developed with

relatively low cost. In this section, we provide an overview of the previously-defined

requirements and describe the new AMP design. In addition to the material below, the

AMP and the underlying deliberation scheduling algorithms are discussed in detail in

several publications [31, 11, 23, 25, 28].

10.1. Requirements for the AMP

Based on prior experience with the CIRCA architecture and our scenario designs for the

UAV demonstration domain, we developed a set of general functional requirements for the

AMP. We want the AMP to:

Decompose a Mission into Phases — The AMP must divide up the overall mission

(and associated problem state space) into a series of mission phases with overlapping

state space regions.

Create CSM Problem Configurations for the Phases — For each mission phase,

the AMP must build a problem configuration that it sends to the CSM for planning.

The CSM will builds real-time reactive control plans for each of these problem

configurations.

Modify Configurations when the CSM Fails — If the CSM fails to generate a safe

controller for a given subproblem, the AMP must modify its plans to reduce the

complexity of that phase.

Set up Execution-Time Sentinels/Monitors — The AMP must be able to

automatically monitor its own performance to detect deviations from the plan.

Incorporate Changes During Execution — Because the AMP is the long-term

planner in CIRCA, it must be able to handle deviations from its coarse plan as the

situation progresses.

Manage Reasoning Resources (Deliberation Scheduling) — The AMP must

control the CIRCA reasoning process itself, so that the CSM builds controllers in a

timely fashion; if the phase problems sent to the CSM are badly formed, the CSM

may never return success or failure. The AMP must monitor CSM performance and

adjust its plans to meet the soft real-time deadlines imposed by the domain.

32

(while (not *halt*)

(setf task (rank-and-choose #’priority #’max (tasks *self*)))

(cond (task ;; if there is a task selected, remove and execute it.

(setf (tasks *self*) (delete task (tasks *self*)))

(execute-task task)

(process-all-msgs))

(T ;; no tasks are ready; wait on inputs and flash heartbeat

(if (wait-for-input-available *sockets*

:timeout *heartbeat-period*)

(process-all-msgs)

(show-heartbeat)))))

Figure 10. Simplified Lisp code for the AMP outer loop, processing tasks and messages.

Plan for Multiple Agents — Distributed applications of CIRCA will require the AMP

to communicate and coordinate with other agents to effectively manage roles,

responsibilities, and closely-coordinated behaviors.

Direct Execution — The AMP should direct the overall execution of real-time control

plans by managing the plan cache in the RTS; this requires interleaving execution

and planning.

Search — The system must maintain an explicit representation of planning decisions for

possible re-evaluation and change.

In the original SA-CIRCA formulation of these requirements, we were focused on making

the AMP a projective planner that could reason about abstract phase plans and project

such aspects as fuel consumption. In the MASA-CIRCA ANTS-funded project, we

re-focused our requirements to emphasize the AMP’s deliberation scheduling (CSM control)

and multi-agent negotiation functions. Our new design meets all of the above requirements.

10.2. AMP Design

Our AMP prototype executes a fairly simple outer loop based on a “task” metaphor.

Every major function that the AMP can perform is encapsulated in a task object. For

example, one of the main tasks the AMP manages is telling the CSM what controller

synthesis problems to work on. Controller synthesis problems are represented by “problem

configuration” objects that contain all of the CSM API calls to describe the problem to the

CSM. For each problem configuration that has not yet been solved by the CSM, the AMP

maintains a task object which, if executed, will send the API commands to the CSM and

wait for a solution in return. Similarly, the functions to support inter-agent negotiation are

encapsulated in task objects. When the CSM produces an executable plan (controller) in

response to a particular problem configuration, a new task is created to indicate that the

new plan can be downloaded to the executive (RTS).

Tasks have associated priorities that are used to order their execution. On each cycle

33

through the AMP outer loop, one of the highest-priority tasks is selected for execution and

all waiting incoming messages are processed. If no tasks are waiting to execute, the AMP

blocks (periodically flashing a heartbeat signal) until it gets an incoming message, which

will trigger formation of a new task. Figure 10 shows a simplified version of the Lisp code

used to implement this loop. The real system is somewhat more complex because it

remains responsive to incoming messages even while executing some tasks, particularly

while running CSM planning tasks that can take significant time.

Task priorities can be static or computed dynamically, with different computation methods

depending on the class of the task object. For example, the class of tasks for downloading

new plans to the RTS have static priorities set quite high, so that the AMP will almost

always prioritize downloading new plans.

To implement deliberation scheduling that determines which problem configuration task

should be addressed next by the CSM, the planning tasks can be configured to use a

dynamic priority function that depends on many different factors. For example, we can

implement deliberation scheduling based on expected utility by having the system

automatically incorporate information about the expected time to finish the task, the

expected benefits of the task (e.g., the improvement in expected controller quality [and

hence mission success] that will result if the CSM builds a new controller for a particular

phase), and the time at which the task solution is required (e.g., when the aircraft will

enter the mission phase for which this controller is intended).

11. Deliberation Scheduling

For CIRCA, deliberation scheduling is the task of deciding what problems the AMP and

CSM modules should be working on at any time. Most importantly, the time-consuming

planning and scheduling processes within the CSM must be managed to ensure that the

best possible control plans are built throughout the mission. Our first paper in the

Self-Adaptive Software workshop series describes ways in which different CSM plans can

alter system performance [23, 25].

After considering a number of heuristic strategies for deliberation scheduling (e.g.,

earliest-first or shortest-first), we settled on pursuing a more principled decision-theoretic

approach. We modeled the deliberation scheduling problem as a Markov Decision Problem,

so that an optimized policy for the MDP can be used to control the CSM processing

(deliberation) to yield the maximum expected utility. By focusing on maximizing the

expected utility of deliberation, this approach can smoothly balance the competing

pressures of time pressure (tending towards shortest-first planning), self-preservation

(tending towards threat-first planning), and goal achievement (tending towards goal-first

planning).

In [11] we describe this approach and address the time cost of the meta-level decision itself,

by developing computationally feasible heuristics that make deliberation scheduling

decisions “greedily” but quickly. To assess the performance of these greedy heuristics, we

34

describe simplified Markov Decision Process (MDP) models of the AMP’s deliberation

scheduling problem and assessing both the optimal and greedy solution policies. Our

results indicate that these greedy heuristics are able to make high-quality deliberation

scheduling decisions in polynomial time, with expected utility measures quite close to the

NP-complete optimal solutions.

Finally, we implemented the deliberation scheduling strategies developed and evaluated

in [11] into our evolving AMP prototype. Our most recent Self-Adaptive Software workshop

paper [28] describes this implementation and how it meets the objectives for the AMP, and

describes an example scenario comparing several different deliberation scheduling

algorithms. Section 13.2 includes that demonstration description, and also shows how the

AMP’s decision-theoretic deliberation scheduling was critical to MASA-CIRCA’s ability to

respond smoothly and intelligently to unexpected situations, as described in Section 13.4.

12. Demonstration Environment

The MASA-CIRCA advances made in this project are all domain-independent, and can be

applied to a wide variety of real-time agent control problems. Most of the new capabilities

have been demonstrated in the context of simulated unmanned air vehicle combat missions.

Illustrative demonstrations were produced using an existing CIRCA-compatible flight

simulation to provide simple combat-oriented simulation functions.

12.1. The CIRCA Air Combat Maneuver Simulation

Leveraging prior work on flying UAVs with CIRCA (both at Michigan and Honeywell), we

began with a demonstration system capable of simulating a simple F-16 aircraft model

flying over high-resolution terrain. The CIRCA controller was interfaced at a fairly high

level, providing waypoints and other discrete commands (e.g., deploy flaps) to the

simulated aircraft. The simulation itself provided a simple autopilot to fly towards

waypoints, and an auto-throttle function to maintain appropriate speeds.

The simulation provides medium-fidelity combat simulation features including:

• Deployment of chaff and flares.
• Automated evasive maneuvers.
• Ground-based threat installations (SAM sites and IR launch sites).
• IR-guided and radar-guided missiles that track the aircraft and are distracted by
flares or chaff, respectively.

• Air-launched missiles that track ground targets.
• Smoke trails for aircraft and missiles, to provide persistent trajectory display.
• Projected future waypoint/path display.

Figure 11 shows a screengrab from one simulation run, in which the UAV has been

threatened by a surface-to-air missile (seen as a black line curving towards the aircraft) and

it is responding with flares (one of which is seen falling below the flight path) and a

counter-strike missile (seen arcing down onto the surface installation).

35

Figure 11. The demonstration simulation illustrates a MASA-CIRCA-controlled air-
craft responding to attacks with evasive maneuvers, flares, chaff, and coun-
terattacks.

12.2. AMP Information Display

To provide a compact graphical indication of what functions the AMP is performing, we

have developed an AMP Information Display (AID). The AMP sends its status

information to the AID over a socket. Illustrated in Figure 12, the AID gives the observer

visibility into the multi-agent negotiation and planning processes.

At the top of the AID, two labels indicate which CIRCA agent the display is describing,

and what mission phase that agent is currently executing. Below those lines, two light bars

labeled “IN COMM” and “OUT COMM” flash when the agent is receiving or sending over

its socket connections to other agents. Further down, the aircraft icon will display the

status of various aircraft subsystems. This aspect of the AID is obviously

domain-dependent, and it is not fully implemented yet. In the future, we plan to add iconic

representations of engines, defensive systems, and other subsystems subject to damage and

imperfect operation. Currently, the only functioning element of the iconic display is the

center diamond, which acts as a “heartbeat” for the AMP, blinking periodically when the

AMP is idle but still functioning.

Below the iconic display, a set of lines display the status of each of the contracts in the

overall multi-agent system, according to the single CIRCA agent’s view. Each contract

represents a threat or goal that must be handled in a particular mission phase. Each line

has a text label identifying the contract it represents, and a color (not apparent in

36

Figure 12. The AMP Information Display depicts AMP status.

black-and-white printouts) that describes the status of the contract:

Red indicates that a new threat/goal contract has arrived and is not yet even announced

for bids by other agents.

Pink indicates that a new contract has been announced for bids, but all the bids have not

yet been received.

Yellow indicates that this agent has been awarded this contract (i.e., it has accepted

responsibility to “handle” this goal or threat).

Blue indicates that this agent’s CSM is working on a plan to handle this goal or threat.

Green indicates that this agent has successfully generated a new controller (plan) to

handle this contract.

Aqua indicates that this agent has successfully generated a plan to handle this goal or

threat and is also working on a plan to handle it in combination with one or more

other goals/threats (also colored green or aqua).

Gray indicates that another agent has responsibility for this contract.

Purple indicates that this agent was previously responsible for this contract, but is now

disabled and will not handle the associated threat/goal.

The AID can also dynamically visualize the AMP’s tradeoffs between deliberation time and

the expected performance of synthesized controllers. Meters on the right side of the AID

display the survival probability for different mission phases (using the current best

controllers/plans) and the expected reward in each phase.

37

Figure 13. The RTS Information Display shows what each RTS is doing at any time.

12.3. RTS Information Display

The RTS can execute TAPs at extremely high speeds, so it is very difficult for an observer

to follow its runtime activities. However, it can be very useful to have some indications of

what the RTS is doing. To that end, we have developed an RTS Information Display

(RID). As illustrated in Figure 13, the RID uses flashing bars of color to indicate each

primitive test or action the RTS executes. As these color bars flicker rapidly on and off, the

observer can recognize different patterns of RTS activity, and can also discern individual

distinct actions that are infrequent. If a pattern of RTS activity persists for a few seconds,

the observer can also identify specific activities the RTS is performing, by mapping the

flashing bars back to the labels on the left edge of the display.

Recall that the AMP sends its status information to the AID over a socket. We could have

designed the RTS/RID interactions in a similar way. However, because that socket

communication could add significant overhead to the RTS operations, we have chosen

instead to build this version of the RID directly into the flight simulation system used for

our demonstration. This avoids both additional communication for the RTS and additional

screen real-estate: the RID is drawn as a stencil over the top of the simulation display.

This approach has one notable weakness: the RID can only display RTS tests and actions

that are sent to the simulator (i.e., those that interact with the world outside of CIRCA);

it cannot show the RTS activities that are purely internal. For example, several TAPs in

every TAP schedule are dedicated to downloading new TAP schedules, switching between

TAP schedules when a suitable state is reached, etc. These “internal” TAPs cannot be

38

visualized on the RID embedded inside the simulator.

For situations where visualizing these internal activities is also important, we have a

different version of the RID that runs in a standalone mode separately from the simulation

environment. This version is currently only compatible with Xwindows displays. This

version can show all RTS primitives calls, including internal functions such as reading in

new TAP schedules (controllers).

13. Demonstrations

13.1. Demo 1: Team Coordination

13.1.1. Goal

The primary goal of this demonstration scenario is to illustrate negotiation between

CIRCA agents and dynamic generation of controllers on the fly. The demonstration shows

the agents negotiating diverse responsibilities and synthesizing customized controllers at

the start of the mission, as well as re-negotiating roles and dynamically building new

controllers during the mission when unexpected circumstances arise. A recorded movie of

the simulation is available at ../movies/5plane-complete.mov.

13.1.2. Mission

The demonstration scenario contains a flight of five unmanned F16-type fighter aircraft

(MASTER and WING1 through WING4) whose mission is to destroy a ground target while

defending themselves against attack. Figure 14 shows a top-down view of the planned

mission flight path, along with threat and goal location icons. The mission consists of three

phases which correspond to three distinguished flight path segments: ingress, attack, and

egress. During the mission, the AMPs need to create plans that account for several goals

and expected threats:

1. Defending against IR-guided missile threats during the ingress phase.

2. Defending against IR-guided and radar-guided missile threats during the attack

phase.

3. Destroying the target during the attack phase.

4. Defending against IR-guided missile threats during the egress phase.

In addition, one unexpected threat is displayed in Figure 14: a radar-guided missile site

along the ingress path that is not reported to the CIRCA agents (presumably because it is

unknown to our forces). This unexpected threat will turn out to be fatal to WING4, and this

leads to the re-negotiation and replanning activity.

13.1.3. Demonstration Storyboard

When the mission begins, the fighters negotiate responsibilities for the first time. The

MASTER is tasked with defending against radar-guided SAM sites during the attack phase of

the mission. WING1 gets this responsibility during the egress phase. IR threats are handled

by WING1 during ingress, WING3 during attack, and WING4 during egress. Responsibility for

39

Figure 14. This mission overlay shows the expected path with known and unknown
threats and targets.

40

Figure 15. WING4 exploding.

destroying the target is given to WING4. Once plans are constructed for the initial phases,

the aircraft begin flying the mission (even before controllers for the latter phases are

complete).

Before the aircraft leave the runway, controllers have been generated for all of the mission

phases and the AID shows green lights for all of the goal and threat contracts. Then,

shortly after the aircraft pass over their first waypoint, the anticipated IR threat attacks.

Figure 13 illustrates the scene where WING1 has been watching for IR threats and has

begun deploying flares to confuse the incoming IR-guided missile. By repeatedly launching

flares until the missile explodes on one, WING1 successfully defeats the IR-guided missile.

A short time later the aircraft pass near the unexpected radar-guided missile site, which

attacks. Unfortunately, since we did not tell the CIRCA agents about this potential threat,

they have not built controllers that look for this danger. Unawares and unresponsive,

WING4 is destroyed (see Figure 15).

The AMPs immediately detect that WING4 is dead, and re-negotiate its contract

responsibilities. WING2 gets the contract for destroying the target and WING3 gets the egress

41

Figure 16. After WING4 dies, the surviving CIRCA agents re-negotiate and generate
new plans to handle its responsibilities and ensure mission success. Mo-
ments later, as the attack missile arcs in, the CIRCA team takes evasive
maneuvers to avoid a rising radar-guided missile.

IR threat. Within three seconds the re-negotiation process and the new CSM invocations

are complete, and the agents have created new controllers to handle their altered

responsibilities. With all contract lights green (as shown in Figure 16), the team has

recovered and the mission is still headed for success.

The aircraft continue to fly along the ingress flight route to waypoint four, where they enter

the attack phase. When the target is in range, WING2 fires a surface-to-ground missile.

While that attack missile is on its way to the target, the fighters are threatened again (as

illustrated in Figure 16). This time, the MASTER leads the flight into evasive maneuvers that

defeat the radar-guided SAM. Figure 16 shows the aircraft at this time. During the evasive

maneuvers, the second SAM site near the target launches an IR-guided missile at the team.

In response, WING3 deploys flares to defeat that missile. The aircraft then proceed safely to

42

Figure 17. Each phase of the mission involves different threats and goals.

waypoint five. At waypoint five, the flight enters the egress phase of flight, the CIRCA
agents begin executing a different set of controllers that are concerned about a different
set of threats and goals, and the scenario proceeds without further incident.

13.2. Demo 2: Deliberation Scheduling
13.2.1. Overview

In this section we describe experimental results that illustrate how the different deliberation
scheduling algorithms implemented in the AMP can result in widely varying performance. In
this experiment, we fly three simulated aircraft controlled by MASA-CIRCA agents through
the same mission scenario. The three aircraft fly essentially the same route through an
environment containing several threats and goals

4
. The three agents differ only in their use of

different deliberation scheduling algorithms; the point of the scenario is to show that more
intelligent deliberation scheduling algorithms can lead to dramatically improved performance
results. A recorded movie of the simulation is available at ../movies/3plane-delib.mov.

Figure 17 provides an overview of the mission, illustrating the sets of threats and goals
present in each phase. The mission begins with a simple takeoff phase in which the
aircraft face no threats, and only have the goal to reach the ingress phase, which is valued
at 20 units of reward (utils). From then on, progressing to the subsequent phases earns the
aircraft 4 utils on each phase transition. An aircraft may fail to progress to the next phase
either by being destroyed by a missile threat or by not flying along its planned path (e.g.,
continuously performing evasive maneuvers).

The phases have different expected durations, corresponding to how long the aircraft take
to fly each leg of the flight plan. In the figure, the expected durations are shown in
seconds within the phase circle. To make this a compact demonstration, we have made
some of these phases shorter than real combat missions (e.g., ingress might typically take
more than two minutes).

In three of the phases, the aircraft are expected to face three kinds of missile threats, with
varying degrees of hazard. For example, the IR-missile threat is expected to be 40% lethal,
meaning that if the aircraft does not build a plan that anticipates and reacts to this threat,

4Their planned paths are identical, but their actual flown routes may differ due to variations in the use of
evasive maneuvers.

43

Ir-threat 4
Radar-tTireat 5
Raciar-mreat2 5

Ir-threat 4
Raciar-ttireat 5
Raciar-mreat2 5

Ir-threat 4
Radar-tTireat 5
Raciar-mreat2 5

[Takeoffl—^^jj+ (Ingress

Destroy-target. 200u De&troy-target 200u

then the threat will destroy the aircraft 40% of the time it tries to execute this mission.

Fortunately, this environment is considerably more lethal than real-world combat flying.

In the attack and egress phases, the aircraft also have goals to destroy two targets, valued

at 200 utils each. If the CSM is able to build a plan that includes the actions to destroy

the target, then the aircraft will accrue this value if it survives long enough to execute the

associated fire-missile reactions. Building a plan that only destroys the targets is quite

easy. However, building a plan that both defends against the different threats and destroys

the targets is more time consuming. Building a plan that handles all the threats and goals

is not feasible in the available mission time. As a result, the AMP must carefully control

which planning problem it works on at any time.

Note that Figure 17 describes the scenario as it is described to the MASA-CIRCA agents

for their planning purposes. This description includes goals that are definitely present, and

threats that may be encountered. In the actual scenario that we flew the simulated aircraft

against, the aircraft do not encounter all of the potential threats. They actually only

encounter radar-threat2 type threats in both the ingress and attack phases.

Also, to apply time pressure to the planning process, the CIRCA agents are told they must

begin flying the mission as soon as they have a baseline (simple) plan for the first phase,

Takeoff. Since building the takeoff plan takes well under one second, they essentially begin

executing the mission as soon as the mission description arrives. All of the planning for

later phases is performed literally “on the fly.”

The simplest aircraft, Agent S, uses a “shortest problem first” algorithm to decide which

planning problem to work on next. A more complex aircraft, Agent U , uses a greedy

deliberation scheduling algorithm without discounting (highest incremental marginal utility

first). The most intelligent aircraft, Agent DU , uses a discounted greedy approach (highest

discounted incremental marginal utility first). The demonstration shows how the more

intelligent deliberation scheduling algorithms allow the latter aircraft to accomplish more

of their goals and defeat more of their threats, thus maximizing mission utility for the

entire team.

13.2.2. Analysis of Agent S

Agent S sorts all of its possible deliberation tasks based on the expected amount of time to

complete each task, preferring the shortest. Recall that a deliberation task is a request to

the CSM to plan for a new problem configuration. In general, the more complex the

configuration is (i.e., the more goals and threats), the longer the expected planning time.

Figure 18 illustrates which threats and goals are handled by the mission plans that Agent

S developed over the course of the entire team mission. Along the vertical axis, the rows

correspond to the various threats and goals in each mission phase. Time in flight is shown

by the horizontal axis. Dark bars in each row indicate the time period during which the

aircraft has a plan that handles the row’s respective threat or goal. As the CSM completes

its reasoning for a particular problem configuration for a particular mission phase, as

selected by the deliberation scheduling algorithm, the new plan is downloaded to the RTS

44

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

E
xp

ec
te

d
F

ut
ur

e
P

ay
of

f

Time (seconds)

ATTACK/DESTROY-TARGET

INGRESS/IR-THREAT
INGRESS/RADAR-THREAT

INGRESS/RADAR-THREAT2
ATTACK/IR-THREAT

ATTACK/RADAR-THREAT
ATTACK/RADAR-THREAT2

EGRESS/IR-THREAT
EGRESS/RADAR-THREAT

EGRESS/RADAR-THREAT2
EGRESS/DESTROY-TARGET

Takeoff Ingress Attack Egress

Figure 18. Gantt chart of threat and goal coverage for Agent S throughout the mission,
along with graph of expected future utility corresponding to plan coverage.
Note that the agent does not have plans to destroy the targets during the
appropriate phases, and thus acquires few utils.

45

and the configuration of dark bars changes.

For example, the first row indicates that Agent S immediately constructs a plan to handle

the IR-threat for the ingress phase, but quickly supplants that current plan with a plan to

handle the ingress radar threat instead, as shown on the second line. In an ideal situation,

when each mission phase begins the aircraft would already have a plan covering all threats

and goals in the phase, and that plan would persist unchanged throughout the phase.

Charted as in Figure 18, this would look something like a white staircase descending to the

right, with dark bars above.

A key characteristic of Agent S’s performance is that, lacking any better way to compare

two plans, the agent uses its preference for shorter-planning-time as an estimate of plan

utility or quality. As a result, whenever the CSM returns a successful plan, Agent S

assumes that it is better than any previously-generated plan for that mission phase and

discards old plans, installing the new one. In fact, all of the agents use this same behavior,

since the deliberation scheduling algorithm is expected to select for planning only those

problem configurations that may lead to an improvement in overall mission performance.

However, this leads to rather erratic behavior for Agent S, mostly because there can be ties

in estimated planning time for configurations with the same number of threats or goals.

For example, as can be seen in all three phases for Agent S in Figure 18, Agent S covers

two threats (or one threat and one goal) for a length of time, then switches to cover two

others later in the mission. While the other agents may similarly change which threats and

goals they handle, they do so based on expected utility measures only. Agent S’s

impoverished estimate of plan utility (just expected planning time) causes it to waste time

generating plans that are not necessarily better than those it already has.

Figure 19 illustrates the expected future utility that each agent has as the mission

progresses. This chart is somewhat complicated by the fact that it only includes future

utility, so that as the aircraft completes phases and earns utils, its expected future utility

actually drops. However, comparison between the agents on this chart still shows what we

hoped: Agent U and Agent DU significantly outperform Agent S in both expected future

utility and, as described later, in acquired utility (corresponding to actual mission

performance).

As shown in Figure 19, Agent S’s strategy allows it to successfully defend itself against the

radar-guided missile (radar-threat2) that may attack it in the ingress phase. When

another radar missile (also radar-threat2) attacks it in the attack phase, it is also

prepared to defeat it, as its current plan handles both radar-threat and radar-threat2

threats. However, it does not handle the goal of destroying the target, and thus loses

significant potential reward by not achieving the main mission goal. This failure to achieve

full mission success is largely due to the fact that Agent S’s heuristic is not utility-based,

and thus does not distinguish between reward and survival, sometimes replacing valid,

more valuable goal-achieving plans (e.g., radar-threat2 + destroy-target), with

non-goal-achieving plans that it considered slightly more complex based on its

46

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400

E
xp

ec
te

d
F

ut
ur

e
P

ay
of

f

Time (quanta)

Shortest
Utility

Discounted Utility

Figure 19. Each agent’s expected payoff over the course of the mission.

cost-estimation function.

13.2.3. Analysis of Agent Agent U

Rather than computing a policy that indicates what actions should be taken in any possible

future state to maximize expected utility, Agent U myopically looks one state ahead along

all of its immediate action choices and selects the action that results in the mission plan

with the highest expected utility. Agent U need not compute a complete policy; instead, it

computes the policy lazily, determining the action choice for each state only when queried.

Because the greedy agent is making decisions with limited lookahead, it has trouble

assessing the relative merit of addressing near-term vs. far-term risks.

The threat and goal coverage history for Agent U is shown in Figure 20. Like Agent S,

Agent U is able to successfully defend itself against the radar-guided missile

(radar-threat2) attacking it in the ingress phase. However, when another radar missile

attacks it in the attack phase, it is not prepared to defeat it, and it is killed. It has not

done the planning for radar-threat2 in the attack phase because it is making decisions

with limited lookahead, and it has trouble assessing the relative merit of addressing

near-term vs. far-term risks. This problem is exactly what discounting is meant to address.

Although there was ample time available to plan for both the attack-phase radar threat

and the egress-phase destroy-target goal, Agent U is “distracted” by the possibility of

destroying a high-value target in the next mission phase, and busily tries to build

high-quality plans for that future phase instead of for the current attack phase. As a result,

47

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

E
xp

ec
te

d
F

ut
ur

e
P

ay
of

f

Time (seconds)

INGRESS/IR-THREAT
INGRESS/RADAR-THREAT

INGRESS/RADAR-THREAT2
ATTACK/IR-THREAT

ATTACK/RADAR-THREAT
ATTACK/RADAR-THREAT2

ATTACK/DESTROY-TARGET
EGRESS/IR-THREAT

EGRESS/RADAR-THREAT
EGRESS/RADAR-THREAT2

EGRESS/DESTROY-TARGET

Takeoff Ingress Attack Destroyed

INGRESS/IR-THREAT
INGRESS/RADAR-THREAT

INGRESS/RADAR-THREAT2
ATTACK/IR-THREAT

ATTACK/RADAR-THREAT
ATTACK/RADAR-THREAT2

ATTACK/DESTROY-TARGET
EGRESS/IR-THREAT

EGRESS/RADAR-THREAT
EGRESS/RADAR-THREAT2

EGRESS/DESTROY-TARGET

Takeoff Ingress Attack Destroyed

Figure 20. Gantt chart of threat and goal coverage for Agent U throughout the mis-
sion, along with graph of expected future utility corresponding to plan
coverage. Note that the agent is not prepared to defeat radar-threat2 in
the attack phase, and it is destroyed.

48

it fails to develop a good defensive plan, and is destroyed by a radar-guided missile
5
.

13.2.4. Analysis of Agent Agent DU
Figure 21 illustrates the threat and goal coverage profile for Agent DU .
Agent DU builds plans that handles all of the threats that actually occur, and achieves its
goals, achieving the maximum possible mission utility. It does not make the simple mistakes
that the uninformed Agent S does, because its deliberation scheduling strategy correctly
trades off threat-handling and goal-achievement by computing incremental marginal utility.
In addition, its discounting of later utility encourages it to defer planning for which it has more
time, helping it to avoid making the greedy mistakes that Agent U is prone to.

13.3. Demo 3: Hard-Real-Time Coordination

In addition to coarse-grain multi-agent negotiation over roles and responsibilities as
illustrated in Section 13.1, MASA-CIRCA is also capable of a much finer-grain, hard-
real-time coordination that we call “coordinated preemption.” By coordinated preemption,
we mean a set of plans that can be executed by distributed agents to detect, react to, and
defeat a threat. For example, suppose one UAV has a sensor that can detect a missile that
has been launched at the team, but it has no countermeasures to defeat a missile (perhaps
because of weight/power constraints or earlier damage). Furthermore, suppose that
another UAV has the appropriate ECM to defeat the threatening missile, but it has no
threat-detection sensors. How can the two distributed agents build their plans to
accomplish a coordinated preemption: “You sense the threat and I’ll act to defeat it”?
As described in [16], we have developed fully automatic techniques for planning
and executing this type of coordinated plan. The demonstration video available at
../movies/2plane-senseact-v2.avi

6
illustrates this type of coordination. The

demonstration video involves two aircraft with heterogeneous capabilities:

Lead — The lead aircraft (colored blue) can sense targets but has no weapons to shoot them. It
can also defend the team against IR-guided missiles (by popping flares and leading evasive
maneuvers) but it cannot directly sense when an IR-guided missile is threatening the team.

Wing1 — The single wingman aircraft has a sensor that can detect IR-guided missiles,
but it cannot defend against them. It also has air-to-surface missiles that it can fire
at ground targets, but it cannot directly detect the targets.

Naturally, the demonstration involves these aircraft encountering both IR-guided missile
threats and targets, and performing the appropriate communication actions to notify
each other of the world features they cannot sense directly.

5The authors are working to develop a graphical method to display what phase the agent was attempting
to plan for at each time, to clarify this focus-of-attention point.

6Note that this .avi requires onetime installation of a codec, available at ../movies/tscc_codec.exe.

49

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

E
xp

ec
te

d
F

ut
ur

e
P

ay
of

f

Time (seconds)

INGRESS/RADAR-THREAT
INGRESS/RADAR-THREAT2

ATTACK/IR-THREAT
ATTACK/RADAR-THREAT

ATTACK/RADAR-THREAT2
ATTACK/DESTROY-TARGET

EGRESS/IR-THREAT
EGRESS/RADAR-THREAT

EGRESS/RADAR-THREAT2
EGRESS/DESTROY-TARGET

Takeoff Ingress Attack Egress

INGRESS/IR-THREAT

Figure 21. Gantt chart of threat and goal coverage for Agent DU throughout the
mission, along with graph of expected future utility corresponding to plan
coverage. Note that the agent has plans to accomplish the destroy-target
goals by the time the respective phases occur.

50

13.4. Demo 4: Execution Monitoring and Responding to
Unexpected Threats/Goals

This demonstration illustrates how CIRCA can both detect and respond to unexpected

situations (that is, situations that are not handled by its current best plans). There are

several ways in which an unexpected situation (“state”) can arise:

AMP Pruning (Deliberation Scheduling) — As the AMP determines what mission

phases and associated problem configurations should be planned for, it includes and

omits various threats and goals. For example, suppose that the system is planning for

a UAV mission phase in which two types of threats and two goals are potentially

relevant. The AMP may decide to quickly build a one-threat, zero-goal plan. The

resulting executable plan would not be able to achieve any goals or defeat one of the

threats. However, if the unhandled threat actually arose, the system could still

recognize this situation and modify its understanding of the likelihood of the threat

(now definite), and potentially build a new plan to rapidly respond to the situation.

CSM Pruning (Planning) — All versions of the CSM can prune out regions of the

state space from consideration, either by making states unreachable via preemption

or by simply ignoring states as too-improbable. When the CSM has finished building

a plan by assigning actions to all reachable states, it also has an implicit

(non-enumerated) description of all of the unreachable states.

Model Gaps — The most fundamental types of unexpected states may arise if the

models of state (features and their possible values) are incomplete. CIRCA cannot

detect or respond to situations that are completely outside of its domain-supplied

model representation or primitive sensing capabilities. In other words, CIRCA can

only recognize and distinguish situations by the sensing primitives it is given in a

domain; it cannot create new sensors. If two states differ only in unobservable

characteristics, CIRCA will treat them the same. If the actions CIRCA takes result

in unmodeled nondeterministic behavior because of the unobservables, the system

will encounter a “model mismatch.” This is a quite common restriction of

autonomous control systems: we assume that they are not going to have to

hypothesize undetected influences and then construct, presumably from external

artifacts, sensors that make those influences detectable. Interestingly, it should be

possible to extend CIRCA to perform exactly that type of functionality, if desired.

One reason the RTS is highly reactive and does not try to track the CSM’s world

model is that this allows it to continue operating past model mismatches. Suppose,

for example, that the CSM’s world model says that taking action A in state X will

lead to state Y . But, due to unobservable, unmodeled influences, when the RTS

actually takes the action A in state X it sometimes leads to a different state Z. No

problem; since the RTS is not tracking the CSM world model and it is not checking

to make sure that A resulted in Y . Rather, it simply takes the world as its own best

51

Phase: Ingress Attack Egress
Threats (radar-threat2 0.5)

(radar-threat 0.5)

(ir-threat 0.4)

(radar-threat2 0.5)

(radar-threat 0.5)

(ir-threat 0.4)

(radar-threat2 0.5)

(radar-threat 0.5)

(ir-threat 0.4)
Goals (destroy-target 0.01) (destroy-target 0.8) (destroy-target 0.5)

Figure 22. The threat/goal mission profile. The UAV encounters the low-probability

target and an unhandled threat in the Ingress phase, leading to two on-
the-fly replanning episodes.

model [2] and moves on to react to Z. While this is not guaranteed to be the best

strategy, it is the best the system can do with its limited knowledge.

If model mismatches were actually detected, they could be an opportunity for

learning and model revision; this remains an area for future work.

13.4.1. Demo Scenario

This scenario is a modified version of the deliberation scheduling scenario. A single aircraft

flies a mission that is described as having a series of potential threats and goals, with

associated probabilities. However, some of the goals and threats that are actually

encountered during the mission were not considered likely to occur, and thus CIRCA is

unlikely to have planned for them when they arise. Figure 22 shows an outline of the

expected threats/goals by phase. Threats are listed with their “lethality” rating, which in

this case is the probability that, if CIRCA does not plan for them, they will kill the agent

during this mission phase. This lethality value subsumes several constituent probabilities

that could be defined in a more refined model (e.g., the probabilities that the threat will be

encountered, that it will fire one or more times, and that the weapon(s) will kill the UAV).

Goals are listed with their “opportunity probability.” This is the probability that the agent

will encounter a situation in which it is possible to achieve the goal (e.g., that a killable

target will be detected).

For this demonstration, we see that the threat profile is the same across each phase: radar

and radar2 threats are equally likely, and ir-threats are somewhat less likely. However,

the probability of encountering a target that can be destroyed (the opportunity probability

of the destroy-target goal) is very low in the ingress phase, high in the attack phase, and

moderate in the egress phase.

As with the other demonstrations, the aircraft begins flying the mission as soon as baseline

plans are in place for each of the phases; the baseline plans do not address any of the

threats or main mission goals, but simply accomplish the basic fly-to-waypoint behavior

and transition to the next phase plan when the appropriate waypoint is reached. As a

result, all of the planning for handling threats/goals is handled under time pressure, while

the aircraft flies through the mission waypoints. The AMP’s approximate

52

decision-theoretic deliberation scheduling algorithm decides what planning
problems are addressed at any time.
13.4.2. Demo Script
In this section, we provide a time-annotated description of the scenario execution
captured in the video file ../movies/solo-1.avi

7
. The time annotations, shown in minutes

and seconds, are drawn from the video, and are thus only approximations.

Time 00:01 : Baseline plans complete; planning for Ingress/radar-threat —
After the baseline plans are finished, and the AMP has downloaded them to the RTS, it
sends a special “kickstart” schedule to the RTS. The kickstart schedule awakens the
RTS and transfers control to the first baseline plan, for the Takeoff phase. This plan
simply starts the plane’s engines and, when sufficient speed is achieved, launches the
plane into the air. Meanwhile, the AMP has decided to quickly build a plan to handle
the potential radar-threat in the Ingress phase, which is rapidly approaching. The AMP
was originally told the Takeoff phase might last 10 seconds; it actually takes 3 seconds
for the plane to start moving, and after that it is considered in the Ingress phase.

Time 00:02 : Ingress/radar-threat plan complete; planning for Attack — Once
the single-threat plan is complete, the deliberation scheduling algorithm
decides to build a plan for the attack phase that will actually kill the target if it
appears, so that the mission will achieve the potential reward of 200 utils.
Handling the potential Attack/radar-threat is fairly easy at the same time as the
target, so it chooses this combination for this planning problem.

Time 00:03 : Attack plan complete; planning for Ingress/radar and radar2 —
With a reward-achieving plan in place for Attack, the deliberation scheduling
algorithm next tries to improve the probability of surviving to get to the Attack
phase by trying to plan for the two more likely threats in the current (Ingress)
phase. The domain-specific CSM performance profile predicts this will take up to 20
seconds, and there are still over 100 seconds left in the expected Ingress phase
duration. Note that the single-threat plan includes iftime TAPs monitoring for the
presence of the unhandled threats and goals. The iftime server TAP is also in the
guaranteed TAP schedule, so that the iftime TAPs will be executed in round-robin
fashion, with at least one iftime TAP executing per schedule cycle.

Time 00:04 : View shows aircraft — The flight simulation visualization does not
show the aircraft until the user selects a viewing position, so although the
mission began four seconds ago, the plane is not visible in the movie until
after the demonstration operator had a chance to mouse over the simulation
window and hit ‘f’ to select the “follow behind” viewpoint.

Time 00:18 : Ingress two-threat plan complete; planning for two Attack threats —
The CSM has finished planning earlier than expected, and the deliberation
7Note that this .avi requires onetime installation of a codec, available at ../movies/tscc_codec.exe.

53

scheduling algorithm re-focuses its attention on the Attack phase, seeking a safer
plan that also addresses the destroy-target goal. The performance profile
estimates that this planning task may take 60 seconds.

Time 00:30 : Unhandled IR-threat occurs — Before the two-threat Attack plan can be
completed by the CSM, the TAP monitoring for unhandled threats detects an IR
missile launch. The RTS sends a state update message to the AMP, which
immediately halts the CSM, discards its outdated plans for the current phase,
adjusts the IR missile threat lethality to 1.0 in the Ingress phase

8
, and re-invokes its

deliberation scheduling algorithm. The deliberation scheduling algorithm
recognizes that it will not survive this phase without a plan for the IR threat, and
tries to build the cheapest single-threat plan. A key point here is that the
deliberation scheduling makes the correct decision in this situation without any
hints, domain-specific or situation-specific heuristics, or other unprincipled
methods. Knowing that a high-lethality threat is occurring leads the system to
select the shortest-first approach. In other situations, the algorithm may select the
longest task first, or other more complex choices.

Time 00:31 : IR-threat plan completes; planning for IR and radar threats —
In less than a second, the CSM builds the single-threat plan for IR threats,
downloads it to the RTS, and the RTS begins executing it. The revised plan
causes the RTS to begin dropping flares to decoy the IR missile. Meanwhile, the
AMP decides to plan to handle both IR threats (which it knows are occurring)
and radar threats, which are also quite hazardous in this phase.

Time 00:35 : IR-threat defeated — The IR missile explodes on the last flare deployed
by the aircraft.

Time 00:37 : Unhandled radar-threat occurs — A radar missile threat launches on the
aircraft, which has not yet finished the two-threat plan. In less time than it takes the
video’s AID display to update, the AMP plans to handle that threat alone, downloads
and begins executing the new plan (leading to evasive maneuvers) and begins planning
to handle the existing radar threat along with potential radar2 type threats.

Time 00:41 : Radar-threat defeated — The radar missile explodes, just missing
(behind) the evading aircraft. The aircraft stops evasive maneuvers and aims for
its next waypoint.

Time 00:50 : Target appears (unhandled goal) — The current Ingress plan does not
handle the destroy-target goal because the opportunity probability is so low; i.e.,
the input mission description did not think a target would be encountered during
Ingress. However, the current plan does include an iftime TAP monitoring for the
opportunity conditions (in this case, that the UAV has a missile and that a target is

8Here we can see it would be better to have separate probabilities for threat occurrence, which would be
updated to 1.0, and threat lethality-if-encountered, which should remain unchanged. With those two
composed together in the current version, we over-estimate the threat lethality-if-encountered. However,
for our simplified simulation this is a sufficiently accurate model.

54

detected). When the target appears, the RTS again sends a state update to the

AMP, in case an updated plan is required. Note that the RTS only sends state

updates when an unexpected state occurs or when the AMP requests one. Observing

that the state presents an opportunity to achieve the destroy-target goal, the AMP

discards its current phase plans and modifies the goal’s opportunity probability to

1.0. Again reinvoking its deliberation scheduling algorithm, the AMP decides it

should build a plan to handle the goal, since acquiring its reward (200 utils) early in

the plan will ensure at least some overall mission utility. The plan to handle the

target and a potential radar-threat is created in under a second and the AID display

shows the target will be handled.

Time 00:51 : UAV launches at target; planning for Attack phase— With a new

destroy-target plan downloaded to the RTS, the UAV fires at the target while the

AMP/CSM work to build a more complex Attack phase plan to handle two threats

and the destroy-target goal. The plan to destroy a target is quite simple; the RTS

merely needs to invoke a single fire-missile primitive. This is a significant

simplification of a true combat mission, which might involve rerouting and various

complex targeting actions and weapon-release maneuvers. However, the

demonstration is meant to illustrate the detection of unexpected threats/goals and

the resulting intelligent selection of replanning objectives. The complexity of the

(re)planning can vary, and could include other mechanisms such as route planners,

simply by modifying the AMP’s planner performance profile models.

Time 01:00 : Handled radar-threat occurs — The aircraft encounters a radar threat

that is handled by the current plan, and it evades in the normal fashion without

interrupting the AMP’s planning process.

Mission continues per usual — After the target is destroyed, the mission proceeds as

in the prior demonstrations, so we will omit further description. The video is

truncated for compactness.

13.4.3. CIRCA Features Highlighted

This demonstration highlights several new features of CIRCA, including:

RTS Feedback — The RTS is now automatically synthesized with a built-in primitive

send-state-to-amp that captures the current value of all system sensors and sends

them back to the AMP as a snapshot of the world state. The AMP can then use this

state description as the start state for a revised plan.

Unexpected threat detection — For each new plan, the AMP automatically

synthesizes an if-time TAP that detects the preconditions of any threat (TTF) that is

not handled by the plan.

Unexpected goal detection — For each new plan, the AMP automatically synthesizes

an if-time TAP that detects the opportunity-conditions of any goal that is not

handled by the plan. In the current simplified interpretation, the

opportunity-conditions are defined as the preconditions of a single action that

55

achieves the goal. A more complete approach would involve recognizing that chains

of reliable temporal transitions and actions may lead from an opportunity to the

goal, and hence that states more than a single action away from the goal should be

interpreted as goal opportunities.

Interruptible CSM— When running the CSM in the same Lisp environment as the

AMP, the CSM is executed in a separate Lisp multiprocessing thread. This allows

the AMP to remain attentive to messages from the RTS, including the state updates

sent by the RTS’s send-state-to-amp primitive. When a state update arrives, the

AMP can interrupt the current CSM planning thread and initiate a different planning

process, to quickly respond to threats/goals.

Deliberation Scheduling— As described in Section 11, the AMP’s deliberation

scheduling algorithm uses a myopic approximation to decision theoretic solutions, so

that it does not require brittle situation-specific rules or heuristics. As described

above, the deliberation scheduling algorithm smoothly balances consideration of time

pressure (tending towards shortest-first planning), self-preservation (tending towards

threat-first planning), and goal achievement (tending towards goal-first planning).

14. Conclusions

The MASA-CIRCA project has made major advances in several important technology

areas, including:

• Real-time deliberation scheduling and automatic resource-customized problem
formulation.

• Recognizing and responding to unexpected situations.
• Tightly-coupled multi-agent coordination.
• Incremental verification of plans as timed automata.
• Planning in probabilistic adversarial domains.
• Automatic problem space partitioning.
• Coordination protocols to reduce uncertainty about joint behaviors.
• Solving resource-constrained MDPs.

These planning techniques will form key elements of future autonomous, self-evaluating,

self-adaptive control systems that operate robustly in mission-critical environments.

56

The references below include both papers generated by this project and by other projects
and other authors. All of the related publications from Honeywell are available online at
http://www.cs.umd.edu/users/musliner, while the University of Michigan publications
are available at http://ai.eecs.umich.edu/people/durfee/durfee.html. All of the
contract-funded publications are also contained on the CD-ROM within which this report
was delivered to the government.

References
[1] R. Alur, “Timed Automata,” in Working Notes of the NATO-ASI Summer School on
Verification of Digital and Hybrid Systems, 1998.

[2] R. Brooks, “Intelligence without Representation,” Artificial Intelligence, vol. 47, pp.
139–159, January 1991.

[3] D. Cofer, E. Engstrom, R. Goldman, D. Musliner, and S. Vestal, “Applications of
Model Checking at Honeywell Laboratories,” Lecture Notes in Computer Science, vol.
2057, pp. 296–303, 2001. Available online as
http://www.cs.umd.edu/users/musliner/papers/mc-app.ps.gz. Available on this
disk as ../papers/mc-app.ps.gz.

[4] D. L. Dill, “Timing Assumptions and Verification of Finite-State Concurrent
Systems,” in Automatic Verification Methods for Finite State Systems, J. Sifakis,
editor, pp. 197–212, Springer Verlag, Berlin, June 1989.

[5] D. A. Dolgov and E. H. Durfee, “Satisficing Strategies for Resource-Limited Policy
Search in Dynamic Environments,” in Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems, 3, pp. 1325–1332, 2002.
Available online as
ftp://www.eecs.umich.edu/people/durfee/dolgov_satisficing02.pdf. Available
on this disk as ../papers/dolgov_satisficing02.pdf.

[6] D. A. Dolgov and E. H. Durfee, “Approximating Optimal Policies for Agents with
Limited Execution Resources,” in Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), 2003. Available online as
ftp://www.eecs.umich.edu/people/durfee/dolgov_approximating03.pdf.
Available on this disk as ../papers/dolgov_approximating03.pdf.

[7] D. A. Dolgov and E. H. Durfee, “Constructing Optimal Policies for Agents with
Constrained Architectures (abstract),” in Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. 974–975, 2003.
Available online as
ftp://www.eecs.umich.edu/people/durfee/dolgov_cmdp_poster03.pdf. Available
on this disk as ../papers/dolgov_cmdp_poster03.pdf.

[8] D. A. Dolgov and E. H. Durfee, “Constructing Optimal Policies for Agents with
Constrained Architecture,” Technical Report CSE-TR-476-03, Electrical Engineering
and Computer Science, University of Michigan, 2003. Available online as

57

ftp://www.eecs.umich.edu/people/durfee/dolgov_CSE-TR-476-03.pdf. Available
on this disk as ../papers/dolgov_CSE-TR-476-03.pdf.

[9] E. H. Durfee, “Strategies for Discovering Coordination Needs in Multi-Agent
Systems,” DoD Software Tech News, vol. 5, no. 1, pp. 3–8, January 2002. Available
online as ftp://www.eecs.umich.edu/people/durfee/Durfee02strategies.pdf.
Available on this disk as ../papers/Durfee02strategies.pdf.

[10] M. Fröhlich and M. Werner, “Demonstration of the interactive Graph Visualization
System daVinci,” in Proceedings of DIMACS Workshop on Graph Drawing ’94,
R. Tamassia and I. Tollis, editors. Springer Verlag, 1995.

[11] R. P. Goldman, D. J. Musliner, and K. D. Krebsbach, “Managing Online
Self-Adaptation in Real-Time Environments,” in Proc. Second International Workshop
on Self Adaptive Software, 2001. Available online as
http://www.cs.umd.edu/users/musliner/papers/safer01.ps.Z. Available on this
disk as ../papers/safer01.ps.Z.

[12] R. P. Goldman, D. J. Musliner, K. D. Krebsbach, and M. S. Boddy, “Dynamic
Abstraction Planning,” in Proc. National Conf. on Artificial Intelligence, pp. 680–686,
1997. Available online as
http://www.cs.umd.edu/users/musliner/papers/aaai97.ps.Z.

[13] R. P. Goldman, D. J. Musliner, and M. J. Pelican, “Using Model Checking to Plan
Hard Real-Time Controllers,” in Proc. AIPS Workshop on Model-Theoretic
Approaches to Planning, 2000. Available online as
http://www.cs.umd.edu/users/musliner/papers/aipsws00.ps.Z. Available on this
disk as ../papers/aipsws00.ps.Z.

[14] R. P. Goldman, M. J. Pelican, and D. J. Musliner, “Modeling and Verification for
Automatic Synthesis of Real-time Controllers,” in Working Notes of the AAAI Spring
Symposium on Real-Time Autonomous Systems, 2000. Available online as
http://www.cs.umd.edu/users/musliner/papers/ss00.ps.Z. Available on this disk
as ../papers/ss00.ps.Z.

[15] F. Kabanza, M. Barbeau, and R. St.-Denis, “Planning Control Rules for Reactive
Agents,” Artificial Intelligence, vol. 95, no. 1, pp. 67–113, August 1997.

[16] K. D. Krebsbach and D. J. Musliner, “You Sense, I’ll Act: Coordinated Preemption in
Multi-Agent CIRCA,” in Working Notes of the AAAI Fall Symposium on Negotiation
Methods for Autonomous Cooperative Systems, 2001. Available online as
http://www.cs.umd.edu/users/musliner/papers/fs01a.ps.Z. Available on this
disk as ../papers/fs01a.ps.Z.

[17] H. Li, “Execution Resource Allocation for a Real-Time Controller,” in Execution
Resource Allocation for Distributed Real-Time Controllers, chapter 4, Ph.D. Thesis,
The University of Michigan, Ann Arbor, In preparation. Available online as
ftp://www.eecs.umich.edu/people/durfee/li03thesis.pdf. Available on this disk
as ../papers/li03thesis.pdf.

58

[18] H. Li, E. M. Atkins, E. H. Durfee, and K. G. Shin, “Practical State Probability
Approximation for a Resource-Limited Real-Time Agent,” in Working Notes of the
IJCAI-01 Workshop on Planning with Resources, pp. 34–42, 2001. Available online as
ftp://www.eecs.umich.edu/people/durfee/li01probability.pdf. Available on
this disk as ../papers/li01probability.pdf.

[19] H. Li, E. M. Atkins, E. H. Durfee, and K. G. Shin, “Resource Allocation for a Limited
Real-Time Agent (abstract),” in Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 1050–1051, 2003.
Available online as
ftp://www.eecs.umich.edu/people/durfee/li03probability.pdf. Available on
this disk as ../papers/li03probability.pdf.

[20] H. Li, E. H. Durfee, , and K. G. Shin, “Multiagent planning with internal resource
constraints,” in Proceedings of the AAAI 2002 Workshop on Planning With and For
MultiAgent Systems, pp. 31–38, 2002. Available online as
ftp://www.eecs.umich.edu/people/durfee/li02convergence.pdf. Available on
this disk as ../papers/li02convergence.pdf.

[21] H. Li, E. H. Durfee, and K. G. Shin, “Multiagent Planning for Agents with Internal
Execution Resource Constraints,” in Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 560–567, 2003.
Available online as
ftp://www.eecs.umich.edu/people/durfee/li03convergence.pdf. Available on
this disk as ../papers/li03convergence.pdf.

[22] D. McDermott, “Using Regression-match graphs to control search in planning,”
Artificial Intelligence, vol. 109, no. 1 – 2, pp. 111–159, April 1999.

[23] D. J. Musliner, “Imposing Real-Time Constraints on Self-Adaptive Controller
Synthesis,” in Proc. Int’l Workshop on Self-Adaptive Software, 2000. Available online
as http://www.cs.umd.edu/users/musliner/papers/safer00.ps.Z. Available on
this disk as ../papers/safer00.ps.Z.

[24] D. J. Musliner, “Planner Feedback: NIL is Not Enough,” in Working Notes of the
AAAI Workshop on Representational Issues for Real-World Planning Systems, 2000.
Available online as
http://www.cs.umd.edu/users/musliner/papers/aaaiws00.ps.Z. Available on this
disk as ../papers/aaaiws00.ps.Z.

[25] D. J. Musliner, “Imposing Real-Time Constraints on Self-Adaptive Controller
Synthesis,” in Lecture Notes in Computer Science, number 1936, Springer-Verlag,
2001.

[26] D. J. Musliner, “Safe Learning in Mission-Critical Domains: Time is of the Essence
(Extended Abstract),” in Working Notes of the AAAI Spring Symp. on Safe Learning
Agents, March 2002. Available online as

59

http://www.cs.umd.edu/users/musliner/papers/ss02.ps.Z. Available on this disk
as ../papers/ss02.ps.Z.

[27] D. J. Musliner, E. H. Durfee, and K. G. Shin, “World Modeling for the Dynamic
Construction of Real-Time Control Plans,” Artificial Intelligence, vol. 74, no. 1, pp.
83–127, March 1995. Available online as
http://www.cs.umd.edu/users/musliner/papers/musliner-aij.ps.Z.

[28] D. J. Musliner, R. P. Goldman, and K. D. Krebsbach, “Deliberation Scheduling
Strategies for Adaptive Mission Planning in Real-Time Environments,” in Proc. Third
International Workshop on Self Adaptive Software, 2003. Available online as
http://www.cs.umd.edu/users/musliner/papers/safer03.ps.gz. Available on this
disk as ../papers/safer03.ps.gz.

[29] D. J. Musliner, R. P. Goldman, and M. J. Pelican, “Using Model Checking to
Guarantee Safety in Automatically-Synthesized Real-Time Controllers,” in Proc.
IEEE Int’l Conf. on Robotics and Automation, 2000. Available online as
http://www.cs.umd.edu/users/musliner/papers/icra00.ps.Z. Available on this
disk as ../papers/icra00.ps.Z.

[30] D. J. Musliner, R. P. Goldman, and M. J. Pelican, “Planning with Increasingly
Complex Executive Models,” in Proc. Int’l Conf. on Intelligent Robots and Systems,
2001. Available online as
http://www.cs.umd.edu/users/musliner/papers/iros01.ps.Z. Available on this
disk as ../papers/iros01.ps.Z.

[31] D. J. Musliner and K. D. Krebsbach, “Multi-Agent Mission Coordination via
Negotiation,” in Working Notes of the AAAI Fall Symposium on Negotiation Methods
for Autonomous Cooperative Systems, 2001. Available online as
http://www.cs.umd.edu/users/musliner/papers/fs01.ps.Z. Available on this disk
as ../papers/fs01.ps.Z.

[32] D. J. Musliner, M. J. S. Pelican, and K. D. Krebsbach, “Building Coordinated
Real-Time Control Plans,” in Proc. Third Annual International NASA Workshop on
Planning and Scheduling for Space, October 2002. Available online as
http://www.cs.umd.edu/users/musliner/papers/nasaws02-senseact.ps.gz.
Available on this disk as ../papers/nasaws02-senseact.ps.gz.

[33] M. Pistore and P. Traverso, “Planning as Model Checking for Extended Goals in
Non-deterministic Domains,” in Proc. Int’l Joint Conf. on Artificial Intelligence, pp.
479–486, 2001. Available online as
http://citeseer.nj.nec.com/pistore01planning.html.

[34] M. Sze and E. H. Durfee, “Resource-Bounded Subgoaling: Techniques for Automated
Mission Phasing,” Technical report, Electrical Engineering and Computer Science,
University of Michigan, Unpublished. Available online as
ftp://www.eecs.umich.edu/people/durfee/Sze01meganode.pdf. Available on this
disk as ../papers/Sze01meganode.pdf.

60

